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This paper presents the general expressions of the projective irreducible corepresentations of the
20 homologous sets of the magnetic double point groups from which follow all those of the
remaining groups of finite order through isomorphisms (the icosahedral group is excluded). These
are explicitly given in terms of the irreducible representations of the unitary double point groups.
Their special cases provide all the irreducible corepresentations of all magnetic space groups of
wave vector through simple gauge transformations. A method of determining the gauge

transformations is discussed through typical examples.

PACS numbers: 02.20. + b

1. INTRODUCTION

In a senes of papers'— (referred to as I-1V) we have
developed a theory of representation for the point groups
through their double groups regarding them as subgroups of
SU(2). With use of the sitnple subgroup conditions we have
coustructed the general expressions of the unirreps (unitary
irreducible representations) for the double point groups C,,,
D,, T, and O. These four sets of the proper point groups and
their direct product groups with the group of inversion C;
constitute a characteristic set of the finite double point
groups; any one of the remaining double point groups is iso-
morphic to one of them (here and hereafter the icosahedral
group is excluded). Through the vector unirreps of their re-
presentation groups®~’ we have constructed all the projective
unirreps of all double point groups based on the modified
theory of the induced representation in I1. Upon introducing
a new system of classification for the improper point groups
G which is best suitable for describing their isomorphisms
we have described the basis functions of G in I by the angu-
lar momentum eigenfunctions in the general manner as in
the cases of the proper point groups. Extending the system of
classification for the Shubnikov (or magnetic or antiunitary)
point groups G *in 1V we have also constructed all the vector
counirreps (irreducible unitary corepresentations) of all G *
from those of 10 G * through isomorphisms.

In the present work we shall construct the general ex-
pressions of the projective counirreps of all G * of finite order.
This will be achieved via the vector counirreps of the repre-
sentation groups of a characteristic set of 20 G * with full use
of the isomorphisms. The projective counirreps of G * pres-
ently available are limited to the crystallographic point
groups and are given by the counirreps of the magnetic space
groups of wave vector M (k ) in terms of the actual matrices.?
We are seeking the general expressions of the projective
counirreps common to all isomorphic point groups. Their
special cases then provide all the counirreps of all M (k)
through simple gauge transformations. The present result
will greatly simplify the existing matrix representations® of
M (k) and thereby reduce the labor involved in their applica-
tions.
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In Sec. 2, we shall first discuss the isomorphisms of the
representation groups G * based on the new system of classi-
fication introduced in III and IV. Then, we shall construct
G ¥ for the characteristic set of 20 G ° mentioned above. In
Sec. 3, we shall first describe briefly the modified theory of
corepresentation introduced in IV and then construct the
general expressions of the projective counirreps of G * via the
vector counirreps of G*'. In the final section, we shall illus-
trate how to determine the gauge transformations which
connect the counirreps of the magnetic space groups of wave
vector M (k ) and those of the corresponding G ** determined
in this work.

2. THE REPRESENTATION GROUPS OF THE MAGNETIC
POINT GROUPS

Before constructing the representation groups G * for
the magnetic point groups G °, we shall first discuss their
isomorphisms in terms of the new system of classification of
G’ introduced in IV and thus minimize the number of G * to
be constructed. Here and hereafter, we mean by a point
group its double group unless otherwise specified.

Let H be the halving subgroup of G *, then

G'=H+aH, a=6z (2.1)

where a is an antiunitary operator defined by the time inver-
sion ¢ and a unitary operator z, which is compatible with H.
Following the new system of notations introduced in III and
IV, we denote G* gleﬁned above by H ?. Then, the one-to-one
correspondence §i>6 gives the following isomorphisms*
(~):

H~H°, HP~H9 H'~H" (2.2a)
while the one-to-one correspondences ¢, «>c, and ¢;«>c;
yield

z z
C:,~C3,, D:,~D3, Ti~0% C:~D:.

(2.2b)

On account of these isomorphisms, a characteristic set

of G* may be given by H ¢, H? and H “, where H is a proper
point group Por a direct product group P; = PX C, of Pand
the group of inversion C,. It should be noted here® that P’
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TABLE 1. The representation groups of the unitary and antiunitary point groups {finite order).

r=e

)

?
\;>
i
D

1. Ci: x"=3% F=e

2. C¥ C, xa=ax,a*=16 " =e
(r=1, if nis odd)

3. C¥: C.:xa=ax, a°=7éx; 7" =¢e
(r=1, if nis even)

4. C¥:. Cj;xax=£fa, a*=7e, £l =T =e
(¢ =1,if nis odd)

5. Cl; x"=¢, € =e xi=fix, P=¢; f=¢
(B=1,if nis odd)

6. C%:. C.(B) xa=ax,la=C(adl, =718 (=T =e
(B=r=1,ifnisodd)

7. C% Cu(B=1); xa=ax, la=(dl, @ =7éx; (=1 =e
(r=1,if nis even)

8. Cu: Ci(Bhxax=¢a, la={(al, @ =71¢, £? = =T =¢
(& =1,if nis odd)

9. D;: x"=p'=(xy)=¢ & =e

10. D$: D5 xa=éax, ya=map, a° =718, £ =n"=1=e

1. D¢, . D, \;xa=ax,ya=ayp, a*=71¢, ' =¢

12. D%: D,; xa=ax, ya=ayx, a*=7éx; " =e

13. D¢ . .. D5, xa=ax, ya=nayx, a*=71ex, B’ =17 =e¢

14. re X" =P =(xy) =8 & =e, xI=Pf0x, yi=yiy, P=e¢
Bl=p*=e (B=1, ifnisodd)

15. D3, D5, (B v} xa=¢ax, ya=nay, ia={dl, & =15
é‘zznz:gZ:Tz:e

16. D3 v DY) xa=ax, ya=ayp, la={di, a’ =g
P=rt=e

17. D% .. D AB=1\,v; xa=ax, ya=ayx, la={dl, a° = 1ex;
(=7 =

18. Dy .2 D7k xa=ax, ya=nayx, ia = ldi, a* = reéx;,

19. T: X*=y'=% (x)p)'=e¢, e’=¢

20. T T’ xa=ax, ya=ay, a°=7¢, " =e

21. Ti: T'; xa=ax, yay=ax, a’=7éx; " =e

22. T!: x*=¢ & =¢, " =¢, x5* = sx)

23. T¢: T} xa=ax, sa=7as, a*=7¢, ¢ =e¢;, 1° =

24. T¥: T/, xa=ax, sas=7max, a*=71éx; P =T =e

25. 0: x*=y =(x))=2 &=e¢

26. O O';xa=¢Eax, ya=ay, a* =716, £ =7 =¢

27. 0! x*=p =x)f=¢ & =e, xi=p0x, yi=
Bi=e

28. 0. 0/(B); xa= £ax, ya=ay, Ta = {di, a* = 7¢

E:=(l=r=e¢

(i) e = identity element, € = 2 rotation, 7 = inversion.

(ii) The second order elements S, ¥, &, 7, {, 7, and € are all in the center of the respective G .

+#P* x C; in general even though Pi~P*X C,;. The repre-
sentation groups G *” of a characteristic set of 20 G * are given
in Table I (their construction will be discussed shortly).

These are described by the defining relations of the abstract
group generators, which are common to all groups isomor-
phic to each other. Possible realizations of these generators
of the respective double group may be made through (2.13) of
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1. To simplify the tabulation, we have also included in the
table the representation groups of the characteristic set of
eight unitary groups determined in II; these are then used to
describe the representation groups G *'. Thus, Table I pro-
vides all the representation groups of all finite point groups
(unitary or antiunitary) through isomorphisms (icosahedral
groups are excluded).

Shoon K. Kim 190



Construction of any of these representation groups G *'
is straightforward as in the cases® of those of the unitary
point groups except that the operator a is antiunitary. We
start from the most general form of the projective counirrep
of the defining relations for the generators {x;, a} of a given
antiunitary group G °, where x; are the generators of H.
Then, through gauge transformations and the inner auto-
morphisms (in particular, with respect to the antiunitary op-
erator a) we arrive at the minimum set of the independent
coefficients (or projective factors) {a;; i =1, 2, ..., v} for
each G*, all of which can be shown to satisfy the same qua-
dratic equation:

=1, i=12, .. (2.3)

This is completely analogous to the case of the unitary
groups.>” These coefficients are given by the Greek symbols
B, v, & m, &, and 7in Table I. Now, we regard these coeffi-
cients as the second order generators which commute with
each other and with all the elements of G °. Then, we arrive at
the representation group G * described by a set of the defin-
ing relations of the generators {x,, g, a,} as given in Table L

By construction, every projective counirrep of G * fol-
lows from the vector counirreps of G *’ up to p-equivalence.
Each representation of the coefficient set {a; } in G ** defines
a class of factor systems for G°. Thus, the number of p-ine-
quivalent classes (or order of the multiplicator) for a given G *
equals 2%, where v is the number of the coefficients in G*’.
According to Table I, the maximum number of classes for a
given G° equals 64 ( = 2°) which occurs for D, ;, while the
minimum number equals 1 which occurs for C5, , ; or C¥.
According to the present classification there exists a total of
180 p-inequivalent classes for all G * while there exists a total
of 13 p-inequivalent classes for the unitary point groups.
These are all of finite order and the icosahedral groups are
excluded.

3. THE PROJECTIVE COUNIRREPS OF THE MAGNETIC
POINT GROUPS

We shall construct all the counirreps of the representa-
tion groups G *' listed in Table I based on the modified the-
ory of corepresentations developed in IV. For convenience,
we may reproduce here some of the basic results of the the-
ory and introduce small modification for the notations of the
counirreps.

Let H (G *') be the halving subgroup of G* and {4 "(h '}
be a complete set of the unirreps of 4 'eH (G *'). Then, there
exists a unitary matrix such that

A¥a"'h'a)* = N(a)~'A*h')N (a) (3.1)
for all 2 'e(G *'). Based on this, one can show that there exist

three types of counirreps.

Case (a): v = p, N [a)N (a)* = A *{a%): There exist two
equivalent counirreps given by

SV =4"h"), S¥*tla)= + N(a)
Either one of them provides the required counirrep.

Case(b):v=pu, NN (a)* =
is given by

(3.2a)

— 4 (d®): The counirrep
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A4¥h’) O
St = [o " a(h ')]’
(3.2b)
0 —N
§a) = [N(a) 0 (a)] '
Case (c): v#u: The counirrep is given by
4*h’)y 0
ST = [o " A%k ')]’
(3.2¢)
0 AY(@*)N ()~ '*
S g) = [N(a) 0 (@”)N (a) ]

These three types of counirreps are denoted by the following
notations:

S{Aa%N)  for S of (3.2a) € Case (a),

S{Aav,A" N) for §™¥ of (3.2b) € Case (b},

S, 4# N) forS™ of (3.2¢) € Case (c).
It is noted that the notation S is introduced here in the place

of D used previously in I'V. This is to avoid the confusion
with the notations for the induced unirreps introduced in I,

D" =D('*,* N), D¥"*'=D(I'"; £ N}, (3.4)

for a unitary group augmented by a unitary operator A. Here
D ™ hasasimilar structure as that of S ** except for N (4 )in
the place of N (a)* in S *; and D ™" always reduces to two
inequivalent unirreps D " +)and D " ~'[see Eqs. (6) and (7) in
II]. These notations will also be used later in describing the
unirreps 4 ¥ of H (G *').

The counirreps of G* given in (3.2) are completely ex-
plicit in terms of the unirreps 4 *(h ') of h 'eH (G *') except for
the transformation matrix N (¢) and 4 *(a*). When 4 ”is one-
dimensional, one can take ¥ (a) = 1. In such a trivial case we
shall delete N from (3.3). For a higher-dimensional case, one
determines V (@) from (3.1) for each class of factor systems by
using the defining relations of the group generators given in
Table I. Let us illustrate the determination of N (a) for a re-
presentation group C ', given in Table I(8). It has seven gen-
erators {x, ?, a;3;£,8; 7}, of which x, ?, B3 are the generators
of the representation group C;,; of C,, ; as given in Table I(5).
The halving subgroup H {C ¥’,) is defined by a direct product
groupC, . X C, X C; XC,,whereC, = {e,£},C, = {e,{ ],
and C, = {e, 7}. The transformation matrix N (a) is deter-
mined from

§4°(x7")* = N{a)~'4“(x)N (a),

(3.3)

(3.5)
CAY(i)* = N(a)~'A“(N (a)

for a given set of values of the coefficients £ and £. Calcula-
tion of NV (a) is straightforward. For almost all G *’, the trans-
formation matrices are expressed by the unit matrix 1, with
appropriate dimension d or the Pauli spin matrices (o, , o,,
0, or their direct products except for a few cases where the
antiunitary operator a involves the operator ¢ ( = c,,, ) [see,
for example, Table 11(12)]. Finally, from 4 *(a*) = 74 *(ez%),
we have for C}/;
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TABLE II. The projective unirreps and counirreps of the unitary and antiunitary point groups (finite order).

1 C,K°: 15. D5, Kss={ Byl t={&m )
°;M,,,;m=m°, —-5”<m0<5” K D3, (K)XC,
2. Ci(K;7=1,if nis odd): Ky S, A7), S4,5,4,), SB,B), S(B,,B, ),

K; S(M,), S(Mn/Z)' SM, .M, ), SM,,, M_
m=m*=41,.4n—1)
Ci(K; 7= 1,if nis even}
K; S(M,), tMn‘/Z’ Mn/Z)' S(Mn/z)v SM,..M_.);

m=m*

mh

- CUK;t={£];£=1ifnisodd)

Ky SIM,)im=m’
Kin=2r); SM.. M, _y m=m'=41,..,r

- CuK%s={B};B=1, ifnisodd):

K% CKIXCs MEsm=m"
K{(n=2r;D, =DM, M, )ym=m

- ClKs={BlLt={{};B=7=1,ifnis odd}):

K CLKXC,

Ky SM7, M-, m=m°

Ka(n=2r); S(D,; 1), S(Dr/l; o), SD, ., D, p;0.)
S(D,.,D, .0, m=m =41, .41

Ky(n=2r); S(D,; 0,), S(Dr(/z:Dr/z; a,), SD,,;0,)
S(D,,,D,_,;0,m=m'

SESE, Lo, m=m*=41.,r—}
Ky D3 (K)XC,
K Si4 '1’/421)’ S{Bt, B,t), SIEFE;
K5 D3, K)XC,
K SAE,BF), SA£,BF), SIE,} E
K5 D;,(K4)><C,
K S BF), SlAF,BF), SIESE,_

K, S(Dy; L) S(Dg; L), SID 34D 051, Uy); m=m*
Ky S(Dy;0,), SDg;0,), SDEY1,0,); m=m*

Koy S(Dy;0.) SWDyia,), SID D550, 1) m=m®

Ko S(Dy,Dy;0,), S(Dy, Dy;0,), SDE, D20,

Kus SD,, Dyi o), SID2%0,), SID 22, D i 0,),
SDEDEY s0,0), m=m=11.,4r—1)

Kse; S(Dy, Dg;0,), S(D %, D725 0,,0,); m=m*

Koy S(Dy, Dsi 1), S(Drf/& Ux)'S(Drf/{,Dr(i/% a.)
SDFDr o, 0) m=m

Ky S(D,, Dy;0,), S} Dy 5 0,,0,) m=m*

Ky S(Duw; L), $(Dy; 1), S(D 235 1), S(D 5. D, 55 0,)

o, 1. m=m*

r—m»

g,,0,.);, m=m*

50,05 m=m®*

L) m=m*

r—m S(Di, milao,Xo) m=m'=41,.,4r—1
1. CoLK;t={§};7=1if niseven) Ky S(Diy; 1), S(Dyy50,) S0, D, 55 1), S(D 255 0,)
Ky CiK)XC, SiD7.. w0 X1y LXa ) m=m'
Ky S(M .M, m=m" Ky3 S(Dyy Doy 1), S(Drf/i;Dl4/§;oy)YS(Dr:/§’Drj/;; 1,)
8. C¥ (Ky;s={B},t=|&C ) E=1,ifnis odd): S WD, moXo, L), m=m
K,; CUK)XC; Ky S(Dig, Daysoy), SID 53, D55 0,), S(ID,05, D55 1)

Ky SIMI, M), m=m° S, WDy, 12X0'y,0,><]2); m=m'
Kn=2r; CY(K,)XC. Ky SIDy;0.), SDyys0.), SID5550,), SID5,D550,)
Kun=2r SIM S M _ .} m=m’, —r<m’<r S(Dp.rmi O X0, 0, X0} m=m'

Knln=2r; S(D,; L)y m=m'=41,...r Kie; S(Dy3, Diy;0,), S(Day, Dyys0,), SID,5, D, 55 0,)
Kpln=2r); S(D,;0,) m=m' S, D5 0) SIDG, m DL i 0y X0, 0. X0

Kyn=2r; S{D,.;0,)y m=m’ m=m"

K,n=2r; S(D,,,D,;0,); m=m' Ky S{Dyy Dyo), SID N5 D, G0y, SID; D ES o)
% D, (K": S(D%., »Dh, ni0,X0,0,X0) m=m'

K% A, 4, B, By, E,; m=m*=1,1,..,}n—1) Ky S(Diy Daiay), SID 500, SIDE Do)
10. D5 (K;t={& 7)) S(D%,., 0, X0,0,X0,); m=m'

K, S(4,),5(4;), S(B.), S(B,), S(E; 15,0,)
m=m*=141,.,[r—}

Ky S(d),4,), (B, B)), SIE,. E,; 0,1, m=m*

Ky (A, By), S(An B, S(E, n; 0.}, SIE, o, E, 3 0,)

Ky S0y L) SIDpzi 1), S(D 25 1), S5, D, 5 0)
S5, i lao, X0, m=m'

K S(Dyy; 0.), S(Dy;0,), SID05, D55 1), S(Dr?:/;;o-y)

S(E,E,_,;0,0)m=m=41.,}r—1) S(D%,. w0 X1y LX) m=m'
Ky S(4,,B), S4,, B,), S(E, ,;0,), S(E, 5, E, ;0,) K SIDy Doy 1), SID 53, D 55 0,) SID55 1)
S(E, L E _,:0,0); m=m' S5, i Dh, o Xo, )y m=m'

K S(Dy» Dyya,), SID5, DAL o)), SIDS, D, 50 1)
SD%, DL, i X0y, 0, X1 m=m'
K, S\Dy» Danioy), S(D )5, D, 55 0,), S(ID55, D550,
SD:ms Dm0, X0, 0, X0y m=m"
Ky S(Diy, Dasio,), S(D5550.) SID5, D, 504
13. D3, (K;t=1{n}) S(D5. i O X0, 0,X0,); m=m'
kS st Ko SID,; 1), S(Dysi o), SID 55 0,), SID,55, D 0,),
Ky S(d)), S(4y), S(B), S(By), S(E,; R, 0,R,);; m=m’ a7 S((Dll 21.0‘ o ();x(a)-'/in-'m*( 3D
K;SA,A,SB,B,SEM,EM;URM,Rm;mzm’ mor—ms Yx x+ Ty zh = i »
3 Sid,, 43), S(By, By), S| A ) Ko S(Dy, Dy 0,), S(Dy, Dayi0,), SID Y3, D55 0)
S( "':/;,D,i/;;dz], S(D:nr —m’Dfn,r—m;ay XG’X,UXXUZ);
+

11. D3, (K}
K; S(4)), §(4,), S(B,, By), S(E,; 15,0,)y, m=m'=141,..,r
12. DiK}):
K; S(4), S4,), S(B,,B,), SIE.;R,,,o,R,), m=m*=L 1..,r-1{

14. D (K% s={B y|;B=1,ifnisodd)

K% D,K)XCs At,A#,BE, B EX;
m=m*=1, 1..,4n—1) 16. D%, .\ (Kys=1{rht=1[¢))

Kg; D,=D(A,,A), Dy =D(B,B,), D’=DI(E,; :tay]; m=m* K, D§,+1(K1)Xci

KS(n=2r; D,,=D(4,, B,), Dy;=D(4,, B,), D3 =D(E,;; L 0,) Kiy; SA7,47), S(4,7,4,), SiB*, B, SIES,E, ;150,)

D _ =DE,E _,;o0)m=m=}1.,4—1 m=m=41._,r

K31"=2’); D,,=D(4,,B)), D;,=D|4,,B,), D3*=DI(E,,; +0,) K,; S(D,, 1), S(Dy, Dy;0,), 5D}, D7 1, 0,); m=m'
D, =D(E,,E,_,;0,) m=m' Ky S(Dy;0.), S(Dg;0,), SID %10, m=m'

—m>

m=m

L r—m
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TABLE II. (cont’d.)

17. DY, (Kys={rhr=1{{))
K,; Dgr(K)xCi

Ky SAY, A7), SA47,47), SIBF,BF)SE, E R, 0,R,)

m=m*=41.,r—}
Ksi; S(Dy; 1y), S(Dg, Dy 0,), SID% D% R, 0,R,); m=m*
Ky S(Dy;0.), S(Dg;0,), SIDZ% R, 0,R, ), m=m*

18. Dg’+“‘v(st;S= { }/L;: {"7»§ })
K D‘er+l(Kl)XCi
Ky SAr,47), S4;,4;),SB,B), S(B;,B;),

SETE ;oR,)ym=m=}1,..,r

K5 Dgwl(Kz)XC,
K SAF, A7), SBE,BF), SIEL,E;0R, R, m=m'
Ky S(Dy; 1y), S(Dg; 1), SID %D %R, 00R, ) m=m'
Ky S(Dy;0,), S(Dg;0,), SID %R, 0,R, ), m=m'
K5 S\D,;0,), S(Dy;0,), SIDZ° D% 0,R R, m=m
K.; S(D4, D,;0,),8(Dg, Dy;0,), SIDE’, D% o R

yoims

19. T(KO):
KO; A4, B, B, T, E, El, =E,;, X8, EV, =El/2><BZ
200 T (K):

K, S(4), S(B,, B), S(T; 13), S{E\;50,), SIEin. Efpso,)

21, TYK):

K, S(4), S(B,), S(B,), S(T; C3), S(E,;5Z), S(E{;Z), S(E 05 Z)

22. T(K%:
KO; T(KO)XC:'§ A taBli’Bzi’Ti'El%’E;/inE;'/'zt

23 TUK,;t={n))
K, TK)XC,
Ky S(A*,47), SB#,BF), S(TT, T7; 1), S(E [, E ;o)
S(ES.ENT; o)

R,y m=m

2%. THK,; 1= 7))
Ky; TP XC, R
Ky SA4*,47), S(B",B[), S(B;, By ), ST, T™;Cl)
SEYLEZ), SEELELZ), SEV . ENG;Z)
25. O(K9): )
K% A, 45, E, T\, Ty, E\p, Ej)y =E ;XA Q=E\,XE
26. 0°(K,;1=[£])):
K,; S(A), S4,), S(E 1), S(Ty; 1), S(Ty 15), S(Ey50,)
S(E 50, S(@o, X1y
K, S{4,, 4), S(EE; Uy)’ ST, Ty 1), S(El/21E;/Z;ay)!
S(Q, @ 0, X0ay)
27. 0, (K% s=1[B1)
K OKOXCs A, AF E=, TETHES,E{5,0%
K$; D, =D(A,4,), DF’=DIE; +a,), Dr=D(T, Ty 15)
D\, =DEnE | 1D’ =D(@ +1,X0,)

28. 0; (Kyss={BLir=1{&¢))

K., O°(K,)xC,

Ky SIA], A7), SI4;7,477) SIETET L), ST, T 1)
S(T, Ti5 1), SIE, £y 0,), SIELL Elg;o,)
S, 0750,X1y)

Ky O°(K;)XC;

K SAFE, AF), SIEYE;0,), SITE, T 1)
SEE,Eix0) SI@F.0750,X0,)

Ky;; S(D; 1), SIDE*% D% o), SDrs 1) SIDip s lzxay)’
SWDG"Dg%a, X1y

Ky, S(Dy;0.) SIDE% L), S(Dy;0,X1,)

S(Dyj31023 0, %X0,), SD 5% 0,X1,)

Kus S(Dy; 0,), SID % Ds%0a,), SDr; o, X1,)
S(Dy,5 1050, %0,), S{Dg?, D% 0, Xa,)

Ky SID,,Dy50,), SDEDE%0,), S(Dr, Dr;0,X15)
S(Di2 10 Dijpipns 0, X0,), SID G D 5% 0,X0,)

(i) All unirreps given for the ordinary unitary point groups are defined in I and II. All counirreps given in the table are for r = 1.
(ii) m®, m*, m’,and m" are integers or half-integers defined by — 4n < m°<in, m* =14, 1,..4n — 1),m’' =4, 1,.,r,mt = 4,1,..,}(r — 1) for a given integer # or

r.
(iii) n, (n,) and r, (r.) are odd (even) integers.

(iv) The unirreps E,, of D, given in (8) are defined by 2 X 2 matrices M/, taking the integral part of j even [see Eq. (11) of Ref. 2].
(v) When two transformation matrices are given for a set of counirreps suchasin S(E,,,; 1,, 0, ) withm = m* for K, of D§, in(10), the first one is for every inte-

gral m and the second one is for every half-integral m.

vi)D r*=DIE,; +0,)in(14meansD 7’ =D(E,;0,)andD ;*=D(E, ; —0,).SA *, 4, ) in{15)means S{4 ", 4 ;7 }and S{4,,4,"), The(+ }in

the remaining notations should be understood similarly.

(vii) The transformation matrix R,,, in (12), (13), (17), and (18) is defined by
_ [costmm/n)
= Usin{mm/n)

— sin(mm/n)
cos{rrm/n)

m

(viii) The transformation mattix Zin (21) and (24)isdefined by Z = 2~ '%(o,, — il,)if the basis of E, ,,is{# . (3, 1), ¢ _(1, Y] and Z = 2~ '"*(0, — o, )if the basis
is [¢ (3, 1), (3, — 1] (see Ref. 12 of the previous work*). The matrix C; in (21) and (24} is defined by

0 -1 0
C: =11 0 0f.
0 0 1
AV @) =71= + 1. (3.6)

It should be noted here that in general the coefficient 7 is the
only coefficient which does not affect the transformation
matrix ¥ (@). This fact will be utilized below to simplify the
tabulation of the projective counirreps.

The projective counirreps of G* given by the vector
counirreps of G ¥ thus determined for those listed in Table I
are given in Table II together with the projective unirreps of
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the unitary point groups determined previously.” These are
classified by the classes of factor systems specified by the
representation of the coefficient set {a;,} in the representa-
tion groups. It is noted, however, that only those counirreps
belonging to the classes (90 of them) with 7 = 1 are tabulated
in Table II. Let us call two classes mutually dual if they differ
only in the coefficient 7. Then the counirreps belonging to
the class K ' with 7 = — 1 follow immediately from those of
its dual K with 7 = 1. In general a class K and its dual K ' are
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p-inequivalent except for a few cases [e.g., C5, ., | in Table
1{2)]. In such a case, 7 is fixed to 1.

Since several coefficients e; are involved in specifying a
class, it is necessary to introduce a convenient system of no-
tation for expressing a class: For example, according to Ta-
ble I{15), the representation group D $/ ; has a set of six coeffi-
cients { B, ¥; £, 7, §; 7}, where the subset s = { B, ¥}
characterizes the unitary representation group D, ;, the
subset t = {£, 1, { | characterizes the defining relations lin-
ear in a, and finally 7 characterizes a>. As one can see from
Table [ or II, this is the most complicated case. Usually fewer
coefficients are contained in each subset s or 7 and frequently
there exists only one subset s or ¢ or none besides 7. In the
extreme cases even 7 is fixed. In any case, each representa-
tion of the subset s or t may be denoted by a number such that
for a one-member subset, j = {a, },

I={1}, 2={-1}; (3.7a)
for a two-member subset, j = {a,, a,},

1={1L1}, 2={1, —1},3={~-1,1},

4={ -1, —1}; (3.7b)
and for a three-member subset, j = {a,, @,, a5},

1=1{1,1,1}, 2=1{11, —1},

3={1, — 1,1}, 1

(3.7¢)

S5={—1,1,1j,
T={—1, —1,1},

There exists no subset with more than three members. Now a
class specified by a representation of sand rand 7 = 1 is
denoted by K, and its dual with 7 = — 1 is denoted by K /,.
Analogously, a class involved with one subset ¢ is denoted by
K, and a class with no subset besides 7 is denoted by K and
their duals are denoted by K | and K ', respectively. If K and
K’ are p-equivalent, we denote it by K ~K '. Finally, the
classes of the unitary point groups are denoted by K ¢ or K °.
Obviously no dual can exist for these unitary classes. Table
II contains a total of 90 classes of factor systems for G*and a
total of 13 classes of factor systems for the unitary point
groups. ,

It is worthwhile to illustrate Table IT through an exam-
ple. According to Table I1{10) the group D 5, has a total of
eight classes of factor systems given by K, and X |, where

t = {£, 7]. The counirreps belonging to one of them, say K,
(E=1,1m7= —1,7=1), are given by

S(Al’ Az), A (Bl, B2)’ S(Em’ E_; Oy, 12)9

m=m*=1 ., r—1. (3.8)

4=[)_1,'—1})
6=1{—1,1, — 1},
8={—1, —1, —1}.

The class structure (or the type distribution of the class) may
conveniently be denoted by

K, =(c3b5'b%), {3.9)

wherec, b denotethe types of the counirreps, their subscripts
denote the dimensions of representation, their superscripts
denote the numbers of the respective types, and finally, the
left half of the bracket contains the integral counirreps for
which € = 1, and the right half contains the half-integral
counirreps for which e = — 1. It should also be noted that
the last (27 — 1) counirreps given in (3.8) contain two trans-
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formation matrices o, and 1,. In such a case, the first one o,
is for every integral m and the second one 1, is for every half-
integral m. One can immediately write down the counirreps
belonging to the dual class X 5 from (3.8) as follows:

S(dy, 4,), S(By, B,), S(E,;0,,1,), m=m* (3.10)

keeping in mind that 4 *(@*) = — 4 *{&). The type distribu-
tion is given by (c3a5 ™~ !|a3).

It is worthwhile to comment on the dimensions of the
projective corepresentations of G *. According to Table II,
one-dimensional projective counirreps of G * occur only for
the vector corepresentations. This can easily be shown. Ex-
cluding these trivial cases, the dimensions of the projective
counirreps are all even and limited to 2, 4, 6, 8, and 12. The
highest dimension 12 occurs for O . For the projective unir-
reps of the ordinary unitary groups, the dimensions are li-
mited to 2, 4, and 6 except for the trivial cases of the vector
unirreps,2 for which the dimensions are limited to 1, 2, and 3.

4. APPLICATION TO MAGNETIC SPACE GROUPS

As is well known, the counirreps of a magnetic space
group of wave vector M (k ) can be regarded as the projective
counirreps of the corresponding magnetic point group be-
longing to a certain factor system. The present results given
in Tables I and II specialized for the crystallographic point
groups provide all the counirreps of any M (k ). It is only nec-
essary to determine the appropriate gauge transformations
which connect the generators of M (k ) with those of the corre-
sponding representation group G ** given in Table I. In order
to use the isomorphisms described by (2.2), it is necessary to
classify the crystallographic magnetic point groups in terms
of the new system of symbols H *. For convenience we have
expressed their international symbols in terms of H “in Table
I11. This table is a special case of the more comprehensive
one given by Table I of Ref. 4.

To illustrate the procedure of obtaining the counirreps
of M (k) from Tables I-III, we shall use some typical exam-
ples taken from the tables of irreducible corepresentations of
magnetic space groups given by ML (Miller and Love’). We
shall follow the notations used by them for the magnetic
space groups as well as for the special points of the Brillouin
zone. In using their tables, caution should be exercised, since
the generator sets of M (k) given by ML are in general not in
agreement with those given in Table L. It is also noted that
ML give the matrix corepresentations explicitly only for the
generators while the present general expressions givenin Ta-
ble 11 provide the corepresentations for all the unitary ele-
ments and the antiunitary augmenting operator a through
the unirreps of the point groups given in I. These are suffi-
cient to construct all the basis functions belonging to any
given counirrep as discussed in I'V.

Example 1: Group (76} 9; P4} : From Table 111, the cor-
responding G * is identified as C§. According to Table I(3)
this is one of the most simple cases where G * has only one
class of factor systems K ( ~ K '). From Table I1(3) the counir-
reps of C§ are given by

S{M), S(M,, M), SMM_,),) (4.1)

with the type distribution (a,b,|c,). Let us consider the wave
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TABLE HI. The crystallographic magnetic point groups.*

No. Int Present No. Int. Present No. Int. Present
1 T (ol 21 am'm'’ cy 41 622 D1
2 2 cocy) 22 42'm ce, 42 622 c:
3 m' ce(CY) 23 a2m' D 43 6m'm ce,
4 2/m Ci 24 2'm' cs, 44 6m'm’ Cc:
5 2/m CHCY) 25 4/m'mm Ci, 45 6'm2 Dz
6 2'/m c, 26 &/mm'm D, 46 §'m2' cs,
7 2212 ol 27 4/m'm'm D, 47 6m'2 cs,
8 m'm'2 Ccs 28 4/mm'm’' (o) 48 6/m'mm Ci,
9 m'm2’ ci, 29 A/m'm'm’ D 49 6/mm'm D3,
10 m’'mm C, 30 ¥ (ol 50 6/m'm'm Dj,
11 m'm'm C3 31 32 Cy 51 6/mm'm’  C¢,
12 m'm'm D 32 Im’ Cy 52 6/m'm'm’ D
13 4 C1 33 Im c, 53 m'3 T
14 4 ol 34 Im' D! 54 432 T
15 4/m Cy, 35 3Im' c, 55 43m' ™
16 am’ Ci 36 6 Ce 56 m'3m T
17 &/m' ci, 37 & ol 57 m3m’ T
18 422 D1 38 6'/m Ci, 58 m'im O
19 422 ol 39 6/m’ C
20 ¥m'm Cy, 40 6'/m' cy

“ The grey groups are not listed.

vector groups M (k ) at high symmetry points GM = (0, 0, 0),
M=(4,10),4=(141),and Z = (0, 0, }) of the Brillouin
zone. From the symmetry elements (c,|004), (6c,|00}) = a of
M (k) and the defining relations for the generators of C ¥
given in Table I(3), we have the following one-to-one corre-
spondences,

(c,]001) = x, E=¢ atGMor M, (4.2)
(c,]00) = —x, E= —¢ at 4 or Z, (4.3)

where E is the 27 rotation for M (k ) while @ is the 27 rotation
for C§. All the counirreps of M (k )’s are given by (4.1) with
appropriate gauge factors given by (4.2} and {4.3). The type
distributions for M (k = GM or M) are given by (a,b,]c,)
while those for M (k = A or Z)) are given by (c,]a,b,). These
results are equivalent to those given by ML. On account of
the isomorphism a similar treatment may be given for M (k)
belonging to C5.

Example 2: Group (222} 99; Pn3'm: The corresponding
magnetic point group is a grey group O ¢. Let us consider the
wave vector group M (k )at R = (},},1). In the previous work®
we have considered the unirrep of the space group 222 at R.
From the symmetry elements of M (k ) and the defining rela-
tions of O ¢’ given in Table 1{28), we have the following one-
to-one correspondence:

(c31000) = x, (c3771000) =y, (T]4, %9 =1],

— (4.4)
E=¢, O0=a

with the coefficient set
B=~—1 (£&)=(1,1), r=1. (4.5)

Thus, the counirreps belonging to K,, of O ¢ given in Table
11(28) provides all the counirreps of M (k ) with the correspon-
dence (4.4) without any gauge factors. The type distribution
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is given by (@,c4a,]a.cs) which is in agreement with that given
by ML.

Example 3: Group (194) 266; P 6',/mm’c: The magnetic
point groupis D ;, whichisisomorphictoD ;. Let M (k )beat
A = (0, 0, }). From the symmetry elements of M (k) and the
defining relations for DY, (~D ¢’) given in Table I(10), we
have the following one-to-one correspondence:

(Cs|00}) = ix, (c5|000)=iy, E= —e, a=86I

(4.6)
with the coefficient set

&= -1, 7= -1, 4.7
which identifies K ; of D5,. Thus, from K, given in Table
I1(10} we obtain for K ; of Dy,

S(AI!AZ)y S(BI,B2)s

S(EI/Z; Uy)’ S(E3/2; ay))

S(E; 1),
S(Es;» a,)

S(EZ, 12)’

(4.8)

with the type distribution (c3a3 |a3 ). From (4.6) and (4.8) fol-
low all the counirreps of M {k ) with the type distribution
(a3|c3a3) since E = — 2. Analogous treatments may be giv-
en for M (k )’s belonging to D, D, C5,, and C§,, all of
which are isomorphic to each other.

5. CONCLUDING REMARKS

This work demonstrates once again the effectiveness of
the new system of classification introduced previously>* for
improper as well as for antiunitary point groups which is best
suitable for describing their isomorphisms. We are able to
describe the representation groups of all finite point groups
by those of eight unitary and 20 antiunitary characteristic
sets of the point groups in Table I (the icosahedral group is
excluded). These are given by the defining relations of the
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abstract group generators which are common to all point
groups isomorphic to each other. Then, by means of the
modified theory of induced representations introduced in I1
and IV, we are able to present in Table II the general expres-
sions of all p-inequivalent projective unirreps or counirreps
of all those 28 point groups in terms of the unirreps of the
proper point groups previously determined in II.

The present results are more than sufficient to find all
the unirreps or counirreps of any space group (unitary or
antiunitary) of wave vector through simple gauge transfor-
mations. Here it is essential to identify the point groups cor-
responding to respective space groups in terms of the new
system of classifications. Table III provides the identifica-
tion of the international notations of the crystallographic
magnetic point groups in terms of the new system of nota-
tions H “. As one can see from Table I11, it is hardly possible
to recognize their isomorphisms from the international sym-
bols alone.

The present work can easily be extended to calculate the
projective counirreps of the magnetic point groups of infinite
order. This problem will, however, be discussed in a forth-
coming paper, since they are mixed continuous groups and
thus construction of their representation groups requires
somewhat different algebraic manipulations from those used
in this work.

Note added in proof: In constructing Table 11, the re-
quired matrix representtions of the halving subgroups are
determined from those of the point groups given in Ref. 1
through the following realizations of the abstract group gen-
erators (x, y, and 5): x <> the highest axis of rotation ¢ in the

196 J. Math. Phys_, Vol. 25, No. 2, February 1984

z direction for every point group, y < ¢; for D, or y < ¢}~
for Tand 0, s < ic?* for T,. Accordingly, their respective
matrix representatives thus determined should be assigned
to any group generators represented by x, y, and s, when we
use Table II. Such a realization seems essential for the defi-
nite identification for the coefficient elements a; of the repre-
sentation groups, whose values classify the classes of the fac-
tor systems given in Table II. This note applies also for the
projective unirreps given in Ref. 2.
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A general condition for irreducibility of vector and projective corepresentations of an antiunitary
group is presented. It depends only on the characters of the unitary halving subgroup of the
covering group. It reduces to the well known type criterion of corepresentations when it is

specialized to the three types of corepresentations.

PACS numbers: 02.20. + b

1. INTRODUCTION

The theory of corepresentation of an antiunitary group
was formulated by Wigner.' He has shown that there exist
three types of irreducible unitary corepresentations (counir-
reps), which can be constructed from the irreducible unitary
representations (unirreps) of the halving subgroup of the an-
tiunitary group. Almost of all work on corepresentation has
been carried out using this approach. In particular, a great
deal of work®'? has been carried out up until recently on the
“type criterion” for determining which of the three types is
realized for a given unirrep of the halving subgroup. A more
general approach to the corepresentation theory based on an
extended version of Schur’s lemma was formulated by Dim-
mock.® He has obtained the general orthogonality relations
for counirreps. He has concluded, however, that *“the ortho-
gonality relations have an inconvenient form and further de-
velopment of the representation theory of nonunitary groups
along these lines has so far proven untenable.” Since then
such a general approach has unfortunately been discontin-
ued.

In this work, we shall resume the general approach ini-
tiated by Dimmock and deduce a general condition for a
corepresentation to be irreducible. It will be shown that the
condition depends only on the characters of the elements of
the halving subgroup which is unitary. It is a simple general-
ization of the corresponding condition for an ordinary repre-
sentation of a unitary group. Lack of such a simple condition
must have been a big pain in the theory of corepresentation.
For example, Bradley and Davies,” who first rigorously
proved the irreducibility of the three types of corepresenta-
tions had to show that it is impossible to construct the trans-
formation matrices which reduce them. It is also very satis-
fying to see that the type criterion follows naturally from the
irreducibility condition when it is specialized for the three
types of corepresentations. Previously, the type criterion has
been introduced heuristically.>®

In Sec. II we shall first extend the orthogonality rela-
tions of the counirreps to the projective ones through a cov-
ering group extended by an abelian unitary group.'''*> Then,
from the orthogonality relations of the characters of the cov-
ering group we shall deduce the irreducibility condition for a
projective corepresentation in general. As an application, we
shall give in Sec. III an easy proof for the irreducibility of the
three types of corepresentations. Here, we base our argu-
ments on the modified forms of the corepresentations recent-
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ly introduced by the author. " In the process of the proof, the
type criterion comes in as an essential part of the irreducibi-
lity condition. The criterion thus obtained is applicable to
any projective corepresentation.

2. THE IRREDUCIBILITY CONDITION FOR PROJECTIVE
COREPRESENTATIONS

It is well known'' that for any group G a covering group
G ' can be constructed such that all the irreducible projective
representations of G can be found from the vector represen-
tations of G '. This theorem can be extended to the projective
counirreps of an antiunitary group'* M. Thus we may dis-
cuss the irreducibility condition for the projective corepre-
sentations of an antiunitary group M via the vector counir-
reps of a covering group M’ without introducing cumber-
some projective factors altogether. In the following we shall
first describe a covering group extended by a unitary abelian
group in some detail as a preparation.

Let an antiunitary group M = {m| be defined through
its halving subgroup H = {4 }, which is unitary, as follows;

M = H + ¢°H, 2.1)
where a° is an antiunitary operator. Let M’ = {m’] be an-
other antiunitary group defined by

M'=H' +aH’, [2.2)
where H' = {h'} is the halving subgroup of M " and a is an
antiunitary operator. Let 7 be a unitary abelian group which

is contained in the center of M, then it is also contained in
the center of H'. If there exists an isomorphism such that

M'/T~M, (2.3)

then M is called a covering group of M extended by the abe-
lian group 7. Analogously,

H'/T~H, (2.4)

hence H" is also a covering group of H extended by 7. Now
let M = {/n} and H = {4 } be the sets of the respective coset
representatives of M ' and H ' with respect to T Let these be
chosen such that

M =H + aH. (2.5)

In general, M and H may not close. On account of {2.3)and
(2.4) however, there exists one to one correspondence,

mes>m,

ie.,
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hh (2.6)

and

a®h<ah,
such thatif D (m’)is a vector counirrep of m’eM 'belonging to
a definite unirrep of 7, then m—D (/) provides a projective
counirrep of M belonging to a factor system defined by the
unirrep of 7. Analogously, let 4 (4 ') be a vector unirrep of
h'eH’,thenh—4 (h ) providesaprojective unirrep of H speci-
fied by the unirrep of 7.

With the preparation given above we shall now discuss
the orthogonality relations of the projective counirreps. Let
DY (m’) and DV (m’) be two inequivalent counirreps of
m'eM . Then, from their orthogonality relations given by
Dimmock® we can easily derive the following orthogonality
relations for the projective counirreps D'? () and DV (m) of
meM:

S DYk), DY R)E, =0, (2.7)
heH
S DY(ahk), D ah)}, =0, (2.8)
heH

2 {D(ij (}'1 )apo (ﬁ )Ev +D® (a; JarD o] (a}_l )E,, }
heH

—d M558

uv?

(2.9)

where d; is the dimension of D) and |M | is the order of the
group M. The original orthogonality relations due to Dim-
mock is recovered if we replace # and a by 4 and a°, respec-
tively. Taking the traces of (2.7) or (2.9), we obtain

S Wik (h)* =0, (2.10)
S «'lah )’ (ah)* =0, (2.11)
S IR + & ((@h )} = M|, (2.12)

heH

wherex’ and«’ aretraces of D) and DY, respectively. Since
(ah ? belongs to H', Eq. (2.12) depends only on the elements
belonging to the unitary halving subgroup H ' of the covering
group M. This fact makes the theory tenable for deducing
the irreducibility conditions, since Eq. (2.12) serves as the
necessary and sufficient condition for DY to beirreducible as
it will be shown below.

Let D be a unitary corepresentation of M ' correspond-
ing to a definite unirrep of the abelian group 7 and « be its
character. Let n; be the number of times a counirrep D
appears in the reduced form of D. Then,

x(h')=Snxi(h') for all h'eH’, (2.13)
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n; =zx(ﬁw<ﬁ)"/ > Ik h)P. (2.14)
In view of (2.12), let us define a sum S (D) by
(L A B
S(D)_(le)Z [ )2 -+ (e 2. 2.15)

kel
Then, from (2.13) and (2.15) we have the following inequa-
lity:
SD)>3n;, (2.16)
where the equality occursifand only if n? = n, for alli. Thus,
the corepresentation D of M’ {or the projective corepresenta-

tions of M) is irreducible if and only if the sum takes its
minimum value

S(D)=1. (2.17)

It is a simple extension of the ordinary irreducibility condi-
tion for a unitary representation. It should be noted that only
the second term in the bracket on the rhs of (2.15) may de-
pend on the factor system. If necessary, one may express the
second term in terms of the character «(m) of the projective
counirrep D (m) of meM as follows:

{(ah P} = [a®h,a’h I« (ah D), (2.18)
where [a°h, a°h | is the projective factor for the product

D(ak )D(ak )*. As it will be seen in the next section, this sec-
ond part is related to the type criterion of the counirreps.

3. APPLICATION TO THE THREE TYPES OF
COUNIRREPS

By the irreducibility condition (2.17) we shall first give
an easy proof for the irreducibility of the three types of the
counirreps of M ' and at the same time deduce the well known
type criterion first introduced by Dimmock and Wheeler’ in
its most general form. We shall base our argument on the
modified form of the three types of counirreps recently intro-
duced by the author.”

Let {4¥(h')] be a complete set of the unirreps of the
halving subgroup H ' of M’ belonging to a definite unirrep of
the abelian group 7. Then, A” (@~ '4 'a)* is also a unirrep
equivalent to one of the given unirreps, say A*, of H'. Thus,
there exists a unitary matrix N (a) such that

A¥(@'h'a)* = N(a)~'4*(h")N (a) (3.1)

forallh ‘eH ', Sincetwo unirreps A* and 4 are connected by
N (a), we arrive at a corepresentation of M ' given by

' 0
DR ')[A (() ) A%l ,)] , (3.2a)

There exist three cases: For case (a}, v = u, N (@)N (a)*
= A”(a?), we have two counirreps

D*)(h')=A%h");, D¥*'l@)= + Nla) (3-3)

which are mutually equivalent. For case (b), v =4,
N(a)N (a)* = — A% (a®), wehave D™ whichisaspecial case
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of (3.2). Finally for case (c), v#u, we have D™* as given by
(3.2). Theirreducibility of type (a) counirrep is obvious, while
the irreducibilities of those of types (b) and (c) are not quite
obvious.”

In order to reestablish their irreducibilities via the irre-
ducibility condition (2.17) we may rewrite the sum S (D) for
the three types of counirreps as follows, using the orthogona-
lity theorem for y*(A ') of H',

$1D*4) =5+ (377) Z e (3.4a)
SO =2+ (- i ) ) X'k ), (3.4b)
(vuh 1 Vi D 12 7 \2
S0 =1+ (377) T WUaRP) + @R ). B4
Then, the irreducibility condition (2.17) reduces to
1 , case (a),
(|H|) Z Yleh)={ -1 , case (b), (3.5)

0 , case (c)
which is the well known type criterion in its most genral
form and can be proven by a direct calculation in the usual
manner.” If necessary the above criterion can be rewritten in
terms of the projective factor as in (2.18).
Thus, we have established that the type criterion serves
also as the irreducibility condition for the three types of the
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counirreps. It holds for any projective counirreps of any an-
tiunitary group. Thus, it is applicable to the single or double
magnetic point groups as well as to the magnetic space
groups. The previous results on the type criterion obtained
by Dimmock and Wheeler® and by Karavaev, Kudryavt-
seva, and Chaldyshev® and by others™!° are easily repro-
duced from the above result.

'E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics
of Atomic Spectra (Academic, New York, 1959), Chap. 26.

C.J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry
in Solids (Clarendon, Oxford, 1972), and references therein.

3G. Frobenius and 1. Schur, S. B. Dent Akad. Wiss. 49, 186 (1906).

“C. Herring, Phys. Rev. 52, 361 (1937).

5J. O. Dimmock and R. G. Wheeler, J. Phys. Chem. Solids 23, 729 (1962);
see also Phys. Rev. 127, 39 (1962).

°J. O. Dimmock, J. Math. Phys. 4, 1307 (1963).

C. J. Bradley and B. L. Davies, Rev. Mod. Phys. 40, 359 (1968).

8G. F. Karavaev, N. V. Kudryavtseva, and V. A. Chaldyshev, Sov. Phys.
Solid State 4, 2540 (1963).

°P. M. Van den Broek, Lett. Math. Phys. 3, 151 (1979).

'9R. Dirl, J. Math. Phys. 22, 1139 (1981).

L. S, Lomont, Application of Finite Groups {Academic, New York, 1959),
p- 230; see also G. L. Bir and G. E. Pikus, Symmetry and Strain-induced
Effects in Semiconductors, translated from Russian by P. Shelnitz (Wiley,
New York, 1974}, p. 88.

128, K. Kim, J. Math. Phys. 24, 411 (1983).

'3S. K. Kim, J. Math. Phys. 24, 419 (1983).

“As is well known, such a covering group of minimal order is called a
representation group of the original group. Recently, the author has con-
structed all the representation groups of all magnetic point groups (except
the Icosahedral group) and their counirreps; see *“The unified theory of the
point group. V,” J. Math. Phys. 25, 189 (1984).
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Semireguiar induction of group representations®
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The method of inducing an irreducible representation of a group from that of a subgroup is
extended. This generalized induction process is illustrated to occur in applications and to account
for some occurrences of “intermediate” or “‘hidden” symmetry. Some general results are proved,
including a reciprocity theorem relating general induction and subduction processes.

PACS numbers: 02.20. + b, 02.30. + g

1. BACKGROUND

Frequently in physics and chemistry one encounters
spaces invariant to a group & of operators. Such a & -invar-
iant space is sometimes generated through the action of ele-
ments of ¥ on a subspace of vectors {or kets) already symme-
try adapted to an irreducible representation 7" of a
subgroup . C ¥ . In the case that this subspace has “no
symmetry”’ other than this .o/ symmetry one expects the
generated % -invariant space to carry the so-called (regular)
induced representation I" *' of & . Now in practice it is some-
times found that the resulting representation is not the
group-theoretically definable /" *' but rather a proper
subrepresentation. Such occurrences have been termed'
“nonregular induction” processes and have been said” to be
due to an “intermediate symmetry.” One might ascribe such
results to a “hidden symmetry” of the function or kets in-
volved.

One situation where nonregular induction occurs in-
volves operators V for the crystal field potential around a
central metal ion. Griffith? takes ¥ as a sum of contributions
from each of the ligand species surrounding the metal. For
instance, the ligand species might be two fluoride ions and
two cyanide ions arranged at the corners of a tetrahedron
with the metal at the center. In this case Vis of totally sym-
metric a, symmetry with regard to the ¢, point group for
the chemical complex; also ¥ may be resolved into irreduci-
ble tensorial components for the larger tetrahedral group
J D %¢,,.Nowa, of ¢,, inducestoa,t =a, +e+1,0f
7: but taking the individual contribution to ¥ for the li-
gands to be as for isolated ligands (with cyclic symmetry
around the ligand-metal axis), one finds that the e-compo-
nent does not occur. Griffith? and later Clark® found many
further instances of such nonregular induction for various
geometries and ligand arrangements.

A second situation where nonregular induction fre-
quently arises involves the construction of chirality func-
tions £, such as are used to describe the optical activity of
molecules. In one approach Ruch and Schonhofer” take f to
be expressed in terms of parameters /; associated with the ith
ligand occurring on a molecular skeleton; then they seek f
which have a chiral symmetry with respect to {point-group-
correspondent) permutations of the /,. For instance five li-
gands might be attached to the corners of a regular penta-
gonal molecular skeleton, which has a permutation group

# Research supported by the Robert A. Welch Foundation of Houston,
Texas.
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¢ s, corresponding to the skeletons point-group symmetry.
In this case fis to have a {chiral) a, symmetry with regard to
¢ s,, and f may be resolved into irreducible components for
the larger symmetric group .5 D % 5,. Now

a,t = 2[3,1,1]; but taking / to be the “simplest™ function of
the /, (namely the a,-projection of /, /3), one finds that only
one [3,1,1] representation is generated from /. Many exam-
ples of such nonregular induction have been found'*?; in-
deed such occurrences motivate Ruch and Schonhofer’s
“qualitative completeness’ concept.

These two situations serve to illustrate the practical oc-
currence of nonregular induction, and some additional ex-
amples from physics and mathematics will be mentioned in
Sec. 6. Our primary interest here is directed to the question:
Is the process of nonregular induction something which
must be addressed on an individual trial-and-error sort of
approach or is there a general purely group-theoretic ration-
alization of such occurrences? Although the former possibil-
ity must be true in the most general case, we here point out a
semiregular induction process that accounts for all practical
cases of nonregular induction which we have examined.

2. SEMIREGULAR INDUCTION AND SUBDUCTION

The processes of interest are characterized in terms of a
subgroup lattice

g

N4 -~ \;’/;’
where ./ and % are two general subgroups of (%, and
9 = &/n# . Irreducible representations of %, .o/, %, and
& will be labeled by corresponding Greek-letter labels 7, a,
B, and &; row and column labels for these irreducible repre-
sentations will have corresponding Latin-letter labels g, a, b,
and d.

Suppose that an irreducible space for I"# of % is acted
upon by elements of .&Z' to project a space of a particular
symmetry a of . and subsequently this .«/-invariant space
is acted on by elements of % to obtain a ¥ -invariant space.
The (maximum possible) representation carried by this & -
invariant space we define to be the semiregular induced re-
presentation denoted by I #-*'( %).

Next suppose an irreducible space for "7 of ¥ is sub-
duced {i.e., restricted) to a particular symmetry « of .27, and
subsequently this «/-invariant space is acted on by elements
of Z to obtain a # -invariant space. The (maximum possi-
ble) representation carried by this % -invariant space we de-

(2.1)
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fine to be the semiregular subduced representation denoted
by I " #).

In the semiregular induction process the “hidden sym-
metry” is that associated with I"? of & . Often I" #*'( 9)
can very readily be seen to be a proper subrepresentation of
I*'( &)since I" #-*'( &), being carried by a space initially
generated from functions of # symmetry, will not contain
any I"?( &) unless it also occurs in I"?'( &). That is, one
might expect that I" #~*'( &) is some sort of “intersection”
between I"*'( ) and I'?'( &). In the semiregular subduc-
tion process there is a “hidden symmetry” associated with
Ir''of%.

3. GROUP-ALGEBRAIC FORMULATION

These definitions can be made manifestly independent
of reference to external carrier space through group-algebra-
ic considerations. The group algebras for ¥, o, #, & are
denoted by A9 ), # (), L RB), &7}, and each has a so-

called matric basis of elements el , €7, é,.,e5,., respective-
ly. Here for instance

“15h 2

Ge ¥

ry, (676, (3.1)

where | & | is the order of & and |y| is the degree of I" 7. Note
that the space < with basis {el..; g’ = 1to ||} is left invar-
iant to &,

g8

Gel, ~ZF .o (G)el

&g’

(3.2)

so that &7 carries the irreducible representation I" (¥ ).
The direct sum space &/7=3, o/ ¥; with basis {e},,;
g8 = + toly|} may be charactenzed as a minimal two-
sided subalgebra, which carries I" (%) |y| times. Of course
there are analogous subalgebras &%, &%, o/ and & ¢, /%,
o for o/, B, D, respectively.

The standard induced and subduced representation
theory may be cast in terms of these quantities. The regular
induced representation I" ®'(¥ ) is that carried by
L G} 2, and the reguler subduced representation
I' *'(/) is that carried by o7 (/) /. These representations
are generally reducible;

r<(9)="% laty|l'"%),
(¥) EIG yirnMg) 33)

') = z [yia| (),

where |aty| and |yla| are frequencies for the occurrence of
the appropriate irreducible representation. As originally
shown by Frobenius® |aty| = |yia].

Semiregular induced and subduced representations
may be characterized in a manner analogous to that for the
corresponding regular representations. The semiregular in-
duced representation I" #~*'(%) is identified as that carried
by o (9 )l * =%, while the semiregular subduced represen-
tation I" "' () is that carried by (% )./ “./ . These re-
presentations also are generally reducible;
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S | Beaty|T1(9),

14

re=a(g)=
(3.4)

rme=(4)=73 |yviaB|I'?(B),

3
where |3\« 1y|and |yla =B | are frequencies of occurrence
of the appropriate irreducible representation.

4. SEQUENCE ADAPTATION AND RECOUPLING
COEFFICIENTS

Since the semiregular processes involve the lattice of
subgroups in (2.1), one may anticipate that sequence adapta-
tion,” say for thechains 2 C & C Yor I C ¥ C 9,
will play an important role. For sequence adaptation to the
simple chain @ C ¥ the row or column labels g can be
presented as zaa, where « is a degeneracy label for the occur-
rence of a in ¥{, and

Tlcapaaid) = 8la,a")8 (@) %.(4),
Ae o (4.1)

Similar comments apply for the Z C ¥ chain where the
row or column labels are presented as £8b. The recoupling
coefficients transforming between these two sequence adap-
tation schemes are of relevance also, and are identified as
(ealy|4Bb) and (4B8b |y|aaa). They inter-relate irreducible
representations for the two sequence adaptation schemes

Z Z (eaa|Y|4Bb )T 1 gyyip5(GNEB ' ¥ d))
ABb AB'h’
=TI'{ qayaa(G)- (4.2)
The recoupling coefficients may be defined to be unitary
(ecxa|y|4Bb) = (4Bb |y|zaa)®. (4.3)

Sequence-adapted matric basis elements arise and may
be transformed between the two sequence adaptation
schemes by the recoupling coefficients.

z z (#Bb |7/|aaa)e(’;5,, WAB'b) («'a'a’|y|£B'b)
“Bb £Bb"

= e(t;aa](a‘a'a'] . (44)
More generally we define skew sequence-adapted matric ba-
sis elements

€l \aca) z/;"b' elgsyepp (aaaly|£'B'b) (4.5)

which are sequence adapted to different chains on the left
and right. They still form a basis to .&/(¥). Further it may be
verified that

€l Ywaa) €aa- = O (,')0 (a,0)el 1 e - (4.6)
Other properties’ will not be needed here.

Sequence-adaptation ideas extend to longer chains,
suchas 7 C &/ C Yand J C # C &. The row and
column labels then are 2a28d and £485d, where 2 and Z are
degeneracy labels for the occurrence of § in ! and B1, re-
spectively. If we choose the recoupling coefficients to be such
that a matrix element of any D € & is left unaffected in the
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transformation from one sequence-adaptation scheme to an-
other, then
(aabd |y|4B28'd") = 6(8,60(d,d " acab|y|4B45 ),
(4.7)
where we note the last abbreviated recoupling coefficient is
independent of d and d '

5. THEOREMATIC RESULTS

Since the space (Y ) .o/ “o/*? carries the semiregular
induced representation labeled by firat ¥, it is of interest
to characterize a (symmetry-adapted) basis for this space. In
a step toward this goal note that a spanning set will be ob-
tained if we take any triple of bases for o/ (¥), &, &% and
then form all products of ordered triples of elements from
these three bases. Consider such a triple of skew-matric
bases: first for o/(¥ ) symmetry adapted on the right to .7,
second for &/* symmetry adapted on the right to &, and
third for &% symmetry adapted on the left to . Then a
typical three-fold product of such matric basis elements will
be

e;la,a',a’) €q:6d) qus "d'b
= b(a,a')b(a,a')6(6,5')8(d,d "Je}; ,z5a) e(géd)b’ (5.1)

where arelation as in (4.6) has been used. Now if one expands
the skew-matric basis element e} .5, asin (4.5), then a typi-
cal nonzero three-fold product will be

¥ B
€l aa) Caizod) €zsd)w

= 2

LBLEd’

=3 («ctib|y|4BES) el

(eaadd ’?’M»B’Z"s’d ) el pisan e(géd)b

(5.2)

where also relations as in (4.6) and (4.7) have been used. Thus
we have our first result:

Lemma I: The space .« (¥ ).o/ .o/ £ is spanned by the
group algebraic elements

> («qadly| AﬁZ{S)e;( 481> vg,a28/ rtanging.
4

Similar considerations for the group-algebraic space carry-
ing the semiregular subduced representation lead us to our
second result:

Lemma 2: The space o7 (% ).of “.o/ ¥ is spanned by the
group-algebraic elements

3 (4B25|y|aaid)el s,y Bbiaadl ranging.
A

As aconsequence of Lemma 1 it is seen that | Boraty] is the
number of linearly independent elements appearing there for
agiven y. But thisis just the rank of the matrix M 728 with the
element in the («26¢)th row and the 4th column being
(«a28 |y|£B48 ). Similarly Lemma 2 implies that |yia w8 |
is just the rank of the transpose of this same M ", Thus we
have a reciprocitiy result:

Theorem: | Bxaty| = (rank of M%) = |ylaf |.

A character formula identifying whether the semiregu-
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lar induction and subduction frequencies are zero or not is
available.

Lemma 3. | Baaty|#0 & y "e®e®)#0
Here e* and ¢” are central idempotents.

a_ ||

= —— aA_l ,
] 2, AT

(5.3)
er =12 2(B "B
7] 2B

with y ©, y *, and y ” being characters, so that
V(eae5)=|a_|]_ﬁ_| 24 YN B(B Y vYAB).
* || |%|A;m3;¢;)(( bl ) Y"(AB)

(5.4)

To prove Lemma 3 first rewrite this in terms of irreducible
representation matrix elements

_lal 1Bl 5 5 sy e -

|-§i| |'Z| Ae.« Be A ab gg
BB WL (AL, (B). (5.5)

¥ "e?e”)

Next choose I" 7 to be sequence adapted for the chain

& C ¥,sothatg = aa'a’ and g’ = <'a”"a”. Now from (4.1)
itisseen that Kronecker deltas & (a’,a ) and & (a,«'}arise with
the nonzero "I, (4 ) terms remaining as I" ¢,- (4 ). Applica-
tion of the (well-known) orthogonality theorem for the
(4 "Yand I'%,. (4 )irreducible representation matrix
elements of &, then leads to

neeeh) — 181
Vi) =S S ST

e# ab 4

(B 7‘)1—‘ {waxaj- aa)(B)
(5.6)

Next utilize recoupling coefficients to transform to a I'" ¥ re-

presentation sequence adapted to # C ¥ and reduce the

resulting I" ¥ representation matrix elements for Be % to
I'#? representation matrix elements; thus

I“(m, aa) Z Z aaa]yléﬂ b
L3y (BNB'b" |y |aca). (5.7)
Now substitute this into (5.6) and use the orthogonality
theorem for irreducible representations of # to find
Y1) =3 3 |(acaly|4Bb ). (5.8)
ab A

Finally choosing the a and b labels to reflect sequence adap-
tationto & C .« and & C &, respectively, we obtain
x'ete?) =2 3 18| \(aca 714828 ). (5-9)
Lo
This equation just involves a weighted sum over the abso-
lute-value squares of the matrix M 7*%; moveover the weights
|6 | in this sum are positive. Thus y "(e“¢?) is nonzero if the

rank of M ¥4 is nonzero, and recalling the reciprocity
theorem we complete the proof.
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6. FURTHER COMMENTS

There are some other symmetry adaptation processes
which, although differing from regular and semiregular pro-
cesses, can be simply expressed in terms of regular induction
and subduction ideas. One such process involves symmetry
adaptation to &7 of a basis of kets already symmetry adapted
to 5 of 4 ; the (maximal) representation so obtained might be
labeled B<x.«7. A second process involves subduction to &/
of a space previously induced to & from 8 of % ; the (maxi-
mal) representation so obtained might be labeled S~ 7.
These representations can readily be verified to be express-
ible in terms of combinations of regular inductions and sub-
ductions

Baot =3 |Bi8|8 1,
’ (6.1)

Bra&/=2|ﬂ?}/|;/lyi.

Thus it seems that semiregular induction and subduction are
the simplest nontrivial mathematical extensions of the clas-
sical {regular) induction and subduction ideas. (Also in terms
of the notation introduced here it may be seen that the mini-
mum of | B 1¥| and | B <+ a||a1y]| is an upper bound to

| Boatyl.)

In addition to the examples of the Introduction there
are other situations which may be interpreted in terms of
semiregular induction. One example from nuclear physics
involves® resonating group functions for the 1s*1 p? configu-
ration; there the relevant groups are again permutation
groups & = P, of = F3X 7,

B =F,X,xF XS, witha = [3]X]3],
B=[RIX[2Ix[1]Xx[1],and Bsat = [2,2,2] + [2,2,1,1]. A
second example involves the symmetric top, where the rel-
evant groups involve rotations of space-fixed (SF) and body-
fixed (BF) coordinates; there & = 45 (3) X 7 5 (3),

o =0 3)X 1, and Z = (Fr(3)X O g(3))p witha = L,
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B =0, and frx @t = L X L. A third example from math-
ematics involves Young’s theory of the symmetric group;
there ¥ = ¥, while a and 3 are the symmetric and anti-
symmetric representations of the row and column groups for
two Young diagrams YD [A J and YD { ul; if [A ] = [ 4] then
Bat = [A], while for the more general case, [A ]#[ 4],
ideas involving the (Young) diagram lattice are® relevant.

Semiregular induction (and perhaps also subduction)
seems to occur widely and frequently. Hence a general unify-
ing theory of semiregular processes seems indicated. The
presentation here is an attempt in this direction—to provide
a common framework for discussion of various diverse ex-
amples and to give some general theoretical results.

Note added in proof. An approach to obtain extra
group-theoretic labels for (subduced) symmetry adapted
states, as described by Newman, ' seems to be interpretable
in terms of semiregular subduction.
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1. INTRODUCTION

This paper contains several new results relating to
SO(3,1) spinor algebra that may be of general use. The main
result, the lemma of Sec. 3, is a straightforward generaliza-
tion of an identity discovered by Dirac, which is satisfied by
the 4 X 4 matrix generators of the Dirac algebra. Section 2 is
expository, SO(3,1) spinor algebra is discussed in detail

from the perspective of SO(3,3). Section 4, provided in the
interest of completeness, records the transformation proper-

ties of various geometric objects under SO(3,1).

Notations and conventions used in this paper are as
follows: upper case Latin indices run from 1 to 6, while both
Greek and early lower case Latin indices run from 1 to 4. If
M is a matrix, then M denotes the transpose of M. We work
in a coordinate system such that the metric tensor g, on M,
has components g, = diag(1,1,1, — 1).

2. THE *° MATRICES AND SO(3,3)

Let y*2 = — ¥%A4,B,... = 1,...,6 denote 15 elements,
which are defined by’

Yo = 1lg g ~ ) — g
4+ g1PYEC 4 gBCYAD _ gBDAC
- %GA R PO S A (1)
where

g = &% =diag(l,1,1, — 1, — 1, — 1), (2)

¥, is the identity element, and €*#“?** is the totally antisym-
metric Levi-Civita tensor-density of weight + 1 in six di-
mensions, €'24*° = 4 1. In virtue of Eq. (1), the set of ele-
ments { + 7o, + ¥*? } forms a finite group of order 32. We
shall consider only real irreducible representations of this
group in which the {,,5*2 } are linearly independent. By
Burnside’s theorem,* a representation of a finite group of
degree fis irreducible if and only if there occur /7 linearly
independent matrices in it; hence, the degree of this repre-
sentation is four. Thus, each of the *# is a real 4 X 4 matrix,
and ¥, is the 4 X 4 identity matrix. We shall denote the real
four-dimensional vector space that carries this irreducible
representation as D,, and refer to D, as (real four-dimension-
al) Dirac space. The vectors of D, will be called (real) contra-
variant spinors, for reasons that will become apparent below.
The elements of D ¥, the vector space dual to D,, will be
called (real) covariant spinors.
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On account of the defining relations of Eq. (1}, one finds
that

,}/‘IB,}/CD . 7,CD,},AB — [yAB’,},CD ]
= — 2y gy
— g+ gy, g

sothatthe — 1*# comprise a real 4 X 4 irreducible represen-

tation of a linearly independent basis of the SO(3,3) Lie
algebra, so(3,3). Moreover, Eq. (1) implies that each of the
y*# matrices has square equal to =+ ¥,, and either commutes
or anticommutes with any other $** matrix. Given a particu-
lar %, there exists another ¥ matrix, say 7, which anticom-
mutes with it. Thus trace (y*%) =

tr(r 'y *®) = triry*Pr 1Y) = — tr{y*®) = 0. Since the y*?
are trace-free and linearly independent, one deduces the
well-known real Lie algebra isomorphism so(3,3)=sl(4,R).
Hence D, carries an irreducible representation of

SL(4,R)= SO(3,3); the vectors of D, are reduced SO(3,3)
spinors. N

Under the involutive automorphism y*2— — 342 of

s0(3,3), the Lie algebra decomposes into the eigenvalue { — 1)
and eigenvalue ( + 1) subspaces corresponding to, respec-
tively, the nine linearly independent real traceless symmetric
4 X 4 matrices, and the six linearly independent real skew-
symmetric 4 X 4 matrices. The eigenvalue ( + 1) subspace is
the subalgebra so(4), which is the Lie algebra of SO(4), the
maximal compact subgroup of SL(4,R). The subalgebra
so(4) =su(2) + su(2) may be further decomposed into the
even (eigenvalue + 1)and odd (eigenvalue — 1)subspaces of
the linear transformation of so(4) whereby r€so(4) is mapped
into its dual, *r. The even subspace under * of so(4) corre-
sponds to self-dual tensors, and, say, the first su(2) in the
direct sum; the odd subspace corresponds to anti-self-dual
tensors, and the second su(2) in the direct sum. A basis for
s0(4) may be chosen as follows. Each of the six skew-symmet-
ric ¥ matrices has the property that the square of the matrix
is equal to — 7,. By Eq. (1), these six matrices are given by
(h = 1,2,3),

2" = (Y2, 4)

and

2t = (P r40%). (5)
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From Eq. (3), these matrices verify (h,k,m = 1,2,3)

[s"t%] =0, (6)
[Sh,sk] — €hkmsm, (7)
[rhe®) =evmem, (8)

The s" (resp. t *) are anti-Hermitian generators of a real re-
ducible unitary representation of SU(2). We shall assume
that the s” are self-dual, and the ¢ ” are anti-self-dual. The six
matrices s”, ¢ *, comprise a linearly independent basis for the
six-dimensional subalgebra so(4) of so(3,3).

The nine symmetric trace-free ¥ matrices may be de-
notedas ", A’ =1',2",3', where I’ = 6,2' = 5,3 = 4. The
»* ¥ comprise a linearly independent basis for the nine-di-
mensional symmetric subspace of s0(3,3). They may be ex-
pressed in terms of s”, ¢ # as follows: contracting Eq. (1) with
€rsapcp Yields:

Yrs = — (1/4!)5R5ABCD7’AB7’CD’ (9)

where yrs = gr,&sp V% Evaluating the left-hand side of
Eq. (9) for " * [after repeated use of Eq. (9)] gives

7,11‘1\' _ 4ghnt nsmgmk’ (10)
where
g™ = diag(1,1, — 1), (11)

and, as we have heretofore implicitly assumed, the summa-
tion convention is operative for repeated indices; here m and
n assume the values 1, 2, and 3.

Let y*#, denote the ath row and 4 th column of y*2,
where a,b = 1,2,3,4. A concrete representation of the 32 is
(hk,m,n = 1,2,3),

2(3h Vo = — €napa — OunOps + 8,404,  (self-dual), (12)
2ty = — €4ups + 8unOps — 0,48, (anti-self-dual), (13)
and

(Vh * )ab = ghmgkn (5ab5mn - 5am6bn - 6an5bm
—28,40540,n + 004€mnps + Op4€mnaa )s
(14)

where €,,., is the totally antisymmetric Levi-Civita tensor
density of weight ( — 1) on D; €,53, = + 1, g"™ as defined in
Eq. (11); and we have substituted Egs. (12) and (13) into Eq.
(10) to obtain Eq. (14). Denoting the right-hand side of Eq.
(12) by s%,, by self-dual we mean that s%, =1 €,,.45%,.
There does not exist a SO(3,3) invariant bilinear form
(inner product) on D,. The SO(3,3) symmetry must be
broken down to, say, SO(4),or SO(3,2) or SO(3,1) in order
to define an invariant bilinear form on D,. To see this, sup-
pose that el " is a SO(3,3) invariant bilinear form, where
AA ‘eD,, A denotes the transpose of 4, and ¢ is the “metric”
spinor of covariant-rank two. Under
S = exp( — lwap 7% )e SO(3,3) 3) (thew,p = — wp, are 15
real parameters), A '—SA4 and A—AS; in order for Aed 'to be
an invariant under SO(3,3) € must be invariant under auto-
morphism by S: e—SeS = . This is equivalent to
7*%e = — ey*® (*® denotes the transpose of y*%).
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Let y*2 = 5" or ¢ ”; then € must commute with each of
these matrices, since each is skew-symmetric. Hence € com-
mutes also with the products, as defined in Eq. (10), and thus
€ commutes with every matrix in the irreducible representa-
tion. Therefore, by the second part of Schur’s lemma,* € is a
numerical multiple of the unit matrix. However, each " * is
symmetric, and must therefore anticommute with €:

7" %€ = y"*¢ = — ey *. Hence € must be zero; there is no
SO(3,3) invariant bilinear form on the real vector space D,.
Another way to show this is to note that y', y°*, and »*®
commute and satisfy ' = 7/‘2 =i ri= -y
and ,}/127/56 ¥**. However, { — 7'2)( — ,}/56 PP —
so that — 7% is not equivalent to
B, '8 = ey*f—e = 0.

There are a number of bilinear forms on D, that are
defined by a nonsingular covariant rank-two spinor €, which
are invariant under a subgroup of SO(3,3). If € is symmetric,
€ = ¢, then Jey"Pw 5 is skew-symmetric:

-~ -~ —
J0,5V"%€ = Jo 7€ = leyP0,p = — JerPo,,.

Since there are six linearly-independent skew-symmet-
ric real 4 X 4 matrices, the maximal subgroup of SO(3,3)
that leaves € invariant corresponds to the six-parameter sub-
group of SO(3,3) generated by {s*,:*}, namely, a SO(4)
subgroup of SO(3,3). A SO(4) invariant inner product may
be defined on D, utilizing a symmetric €.

If € is skew-symmetric, € = — ¢; then ley*%w 45 is sym-
metric
- - —~
B, __ B> __ B __ B
o prie= — W= —levPw, = — ey 5.

Since there are ten linearly-independent real symmetric
4 < 4 matrices, € defines a nonsingular skew-symmetric bi-
linear form on D, whose maximal invariance group is one of
the six possible ten-parameter subgroups SO(3,2) and
S0O(2,3) of SO(3,3) that are generated by ten of the fifteen
— 1y*2. (Which particular subgroup, of course, depends
upon the choice of €.) Since € defines a symplectic form on
D,, one deduces the real Lie algebra isomorphisms
$0(3,2) =sp(2,R) =s0(2,3), where sp(n,R) is the real symplec-
tic Lie algebra whose defining representation is of degree 2n.
S0(3,1) is a subgroup of SO(3,2), but not of SO(2,3},
so that most interest lies with SO(3,2) invariant-symplectic
forms e. There are essentially three distinct choices for e,

namely, *%, °¢, or ¥**. From

%O)AB;/ABG = - %GVAB‘UAB (15)

and Eq. (1), one concludes the following:

(i) If € = ¥**, then one must set w ,, = O in order to
satisfy Eq. (15); the generators of this SO(3,2) are therefore
{— 1", — 1y}, where a,8 = 1,2,3,4.

(ii) If e = %, then one must set w ,, = O; the generators
are { — 1", — 1%, — 1/*S, — 19" bk = 1,2,3}.

(iii) If € = ¥, then one must set w, s = O; the genera-

tors are { — 1%, — 1y*°}.
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S0O(3,3) transformations on D, may be associated with
S0(3,3) transformations on a flat six-dimensional (three
space, three time) Minkowski space-time My, whose metric
tensor is given by Eq. (2). By restriction to an appropriate
four-dimensional affine subspace of M, we can realize M,.
For the sake of simplicity, we shall assume that the x* axis of
M, coincides with the x* axis of M, in every coordinate sys-
tem. It is customary to exclude choice (ii), € = 7°°, as an
interesting symplectic form on D,. 9°¢ is invariant under
those automorphisms of D, that correspond with the auto-
morphisms of M that leave the x* axis of M invariant.

Which of the candidates, ** or ¥**, that is adopted for e
depends upon the association defined between y° and ¢,
and Dirac’s ¥* matrices, and is also based on the fact that one
must restrict the SO(3,2) symmetry toa SO(3,1) subgroup
in order to be in accordance with relativity. As things stand,
case (i) € = *°, implies that €y*° is antisymmetric; *° mixes
with »*# under SO(3,2), while {y,5°%} is a SO(3,2) vector
(w46 = 0) (the transformation properties of the ¥ matrices
are discussed in Sec. 4). Case (iii), € = ¥**, implies that ey*®is
symmetric, while ey*° is skew-symmetric; y*° mixes with y**
under SO(3,2), while {»**,7%°} is a SO(3,2) vector (@ .5 = 0).

Equivalent formalisms are: case (i), € = **; define
¥* = y*°, and append to the constraint w ;¢ = 0, the restric-
tion @, ; = 0, so that »** transforms as a vector under
SO(3,1); case (iii), € = **; define y* = y*°, and append to the
constraint @, s = 0 the restriction o, ¢ = 0, so that y*®
transforms as a vector under SO(3,1). In both cases, the

SO(3,2) symmetry is reduced to SO(3,1).

Without loss of generality, we shall utilize ¢ = ¥** as the
symplectic form. In order to make contact with the usual
conventions found in the literature, it is convenient to make
the following definitions.

Let y* (Greek indices run from 1 to 4) denote four real
4 X 4 matrices (Dirac’s y matrices) that generate an irreduci-
ble representation of the pseudo-Clifford algebra C, (also
known as the Dirac algebra). The 3 are defined by

vV + P =2y, (16)
where
g =g,z = diag(1,1,1, — 1) (17)

is the metric tensor on M, in a Cartesian coordinate system.
Let

ys = - (1/4!)€aﬁyv}/z7ﬂyﬂyv
= — 'V, (18)
where €, is the totally antisymmetric Levi-Civita tensor

density of weight ( — 1) in four dimensions, €,,3, = + 1. A
representation of a linearly independent basis for C, is

=7, (19)

¥ =" (20)

=7, 2y
and defining
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SU= 1P, 22)

S?P= — 1y (23)
The symplectic form € on D, is defined to be
€= ™ (24)

As a consequence of Eq. (1), and the definitions of Eqgs. (16)—
(24), are the identities

Ye= —ep, (25)
SPe= —eSP, (26)
[Sy,] =857 — &, 27)

[S“B,S‘“’] :g”“SB" __gﬂVSB,U __gﬂ;tsav +gB”S"", (28)
and

PSP = g, 1, S, (29)

We introduce a SO(3,1) index notation to compliment
the matrix notation which we have been using. Associate

SO(3,1) indices as follows: D,DA<>A % D ¥D &£, (note

that in matrix notation, £4 denotes §,4 %, while A& denotes
the 4 X 4 matrix with elements 4 °4,; one has tr A£ = &4 );

€€, = — €,,; Ae—d, = A %,,, where the tilde denotes
the transpose of a matrix (mnemonic b« below); raise

SO(3,1) indices with €*® according as £ * = €4, (mnemon-
ic: a«» above). According to this convention
€ = e“e™e ; = €(€"€,y) = €82, therefore,
(€)== — e, (30)
€€, = — 82, (31)
and we find the correspondence £ <> — € '&. y*Ferp 1P,
In index notation, Eq. {25)is ™€, = — €,. 7" = €..7 s>

ie.,

Yha = Vab- (32)
Equation (26) is $ **, €., = — €,.5 %,

Sw=5%. (33)
SeS = €,5¢ SO(3,1), reads

S €aS %y = € (34)
Since %€ = ey,

Yoa = — Vais (33)
similarly, °€ = €y, so that

Yoa = — Vab- (36)

The determinant of € is given by det € = €€, €,,€.3€44,

or equivalently, €, 4 det € = €%, €,, €. €44 since

€> = — ¥, € has eigenvalues + i; since tr € = 0, the eigen-

values occur with equal multiplicity. Hence det € = 1, and

thus
€rvcd’ = €an €bb €cc' €aa e, (37)

a

The fact that the s” are self-dual, and the ¢ * are anti-self-
dual, may be expressed covariantly in both matrix and index
notation. Since e ! = — ¢, *¢ = — € may be written as
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€=*"1 (38)

in index notation, Eq. (38)is €, = J€upea(€ ") = J€0pea €™,
or

€Ep = — %eabcdecd' (39)
Using Eq. (1), one finds that
— ey = y*pie ! = 285g"s* — 657°. Therefore,

— ey =*yre! (40)

expresses the fact that the s" are self-dual for a = 1,2,3, and
that 7° is anti-self-dual when a = 4. Noting that

(—er*P) = Vil = — €V =€ % = Vi)
and
(?,ABe.—- l)ab — 7,ABab( — ,},ABacé. — lcb — 7,ABacebc — 7,ABab )’
Eq. (40) may be expressed as (1%}, = €,0q(¥*¥°), which,
using Eq. (21) yields
Voo = 3€apea V> (41)
Lastly, from Eq. (1), — €/° = ** = — »’¢~!, which com-
bined with *#** = — ¥* gives
— ey’ =*pe!, (42)
ie.,
Yoo = ¥asca V" (43)
As an application of Eq. (39), we evaluate
€795 + €€ + e%e™ = L€’ 5.
— jeer o,
=1 et €€
= —e?e*¢,, [using Eq. (39)]
= 2 [using Eq. (31)].
Thus
€?d = e 4 e + e (44)
(See Ref. 5 for a clear exposition of the properties of the
generalized Kronecker delta, €/, and €,,,.)

3. ABASIC LEMMA

Lemma: Let X be an arbitrary 4 X 4 matﬁx; then

PR+ PR
=X —y,tr X + % tr X, (45)

where X denotes the transpose of X, and tr X is the trace of X.
This identity is valid for any cyclic permutation of
(°%,7°%,7%°), and under the replacement y°°—y'2, %431,
and y**—y%.

Proof: Eq. (45) is linear in X; we verify that this equation
is true for X = y,, ¥°%, ¥*°, %, and *. Note that only for
X = v, (resp °%) is tr X (resp tr °°X ) nonvanishing.

(i} X = yg; since (*9) = — yo = (V) = (v, Eq. (45)
yields

(P + (%) + (P = — 37,
=Yoo= Voll Yo+ ¥ 0 tr y°% =y, — 4y
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(ii) X = 9°%; since °® = — %, and ¥°° anticommutes
with both ** and 7**; Eq. (45) gives
B e o AT
=7 =Y try + 7t — 7o) =¥ — 4%
(i) X = 7%, from Eq. (1),
2'/.75,);6 — 7,56}/:15, ya5y64 — y647/a5’ and
7/157/45 = - 1/452/15; by Eq_: (45),
PP Py
= (PP — ) + (™7™ + (= ™) = v
(iv) X = ¥, one deduces from Eq. (1) that
S = P, o=, and
Y*y* = ¢y, Eq. (45) becomes
PP g P ey
= (P (— 7 + (P — ) + ()P = v
(v) X = »*%, from Eq. (1),
A = o, = o, and
YR = — ¥y Eq. (45) gives

P P Ly
= (PP + (V= v*) + P (— v =y
Since ¥ * = 9>, ¥* =€= — €', and n

PP =9y = — ey’ = — py°e™ !, Eq. (45) may be written
covariantly as

VXY —e ' Xe+ Ve ' Xey’ =X —potr X + 95 tr p°X.
Bringing X to the left-hand side of this equation, and then
multiplying by — 7 gives

(X +e 'Xey’l, =V tr X + 7, tr ¥°X, (46)

where[4,B]. = AB + BA denotestheanticommutator of4
and B. In index notation, X + e~ 'Xeis X%, + €~ "X ¢,
=X +€X e, =X —€, X=X, —X,%Eq.
(46) can be written as
(X9 = X% + V(X4 — X,
= Ysachc + 85 75ch dc- (47)
Eq. (45) is a simple but useful identity, and is a general-
ization of an identity first proved by Dirac? in 1963. The
assertion that Eq. (45) is valid under permutation of 3°¢, y*,
¥*% is true because, as far as so(3,3} is concerned, no su(2)
generator is to be preferred over the remaining two. Eq. (45)
remains valid under the replacement 3* * —3"* because of
the symmetric roles played by the two su(2) subalgebras in
the direct sum of so(4) [self-dual and anti-self-dual, required
in order that the six skew-symmetric matrices be linearly
independent, plays no role in Eq. (45)].
As an application of this lemma, we prove that

VoAV = VoA + VEVA + € 'Ele + e 'Edey’.

(48)

The starting point of this evaluation is to replace y°¢, ¥*, and
¥* in Eq. (45) with, respectively, ¥'% 3, ¥*'. This yields

7/12X7’12 + 7,23‘1';},23 + 7,31}?7,31 =X—~7, tr X + 7,12 tr 7,12X.
(49)

Let X be an arbitrary symmetric matrix, X=X ; then

tr ¥'2X = 0, because X may be expanded in terms of ¥, and
"% each of these matrices, when multiplied by '%, has van-
ishing trace [see Eq. (10)]. Consider

Patrick L. Nash 207



P+ X X
= XY — X — X

[using Egs. (1) and (9)]
=X — Yo tr X =X — o tr X
Hence 7" *Xy"* = y, tr X + X, since X is an arbitrary
symmetric matrix, this implies that (for convenience we
write 459, as y*%, in this paragraph)

Va’;?’ﬁ; + 7/a‘c4 b; = Z(Sad(sbc + 7;ab7;cd + ﬁc}fzd'

Holding d fixed, one may obtain two similar equations by
cyclically permuting (a,b,¢). Upon adding two of these equa-
tions and subtracting the third, one finds that

7,::7/0‘4 = - 6ab5cd + 6ac5bd + aadcsbc + Vchid + ’stzd?/zc'
Contracting this result with 4,£_ yields
YA = — A6 + EA + vofA + VEAY — YEVA
Therefore,

Yoy AEY' + AE W = ALY Y + v ALY

VaAEY" =€ EA + vofA + VEAY' — VErA)e

= YbA + VEr A+ e 'Ee
+PeEley’.

An orthogonality relationship satisfied by the 4% is

— P vanta = 46567 — 5365 (50)
To prove this, constructamatrix Y (X ) = — 1y*%Xy ., + X,
where X is an arbitrary 4 X 4 matrix. Since
(y*?)~' = — ¥,p, this may be written as
Y=X +322 X ()", where y* 2>y i = 1,..,15. If Tis
any 9% matrix, then 7Y = 7X77'7 4+ 32 |
VX (%)~ '7 = Y1; hence y*?Y = Y%, and since the y*#
comprise an irreducible set, ¥ is a multiple 7, X . of y,:
8aTiX e =X — "™y Vaps + 8563). Thus
85T, = — W', v,5°s + 885, which implies
T° = — W™, v° + 8, = 45;, which in turn implies
Eq. (50).

4, TRANSFORMATION PROPERTIES OF ¢

The y*%¢, are numerically invariant under combined
SO(3,3) transformations of M, indices {4,B }, and SO(3,3)
transformations of spinor indices {a,b }. To see this, suppose
L #,€S0(3,3); then the metric on My, g5 of Eq. (2), is invar-
iant under automorphism by L:

84s—L “u8cpL"p = 8us- (51)
The matrices L “ L 8,y satisfy Eq. (1) on account of Eq.
(51), and the fact that (L

det (LA,)=1: A BCPEFLA LB, L ..

LP, LE. L¥,. =detL-e#PF Hencethe L*.L%,y?
provide a real 4 X 4 irreducible representation of the group.
The sum of the squares of the degrees of the irreducible re-
presentations of the group equals the order of the group,

32 = 12 + 4% 4 --- (the degree one irrep is the trivial repre-
sentation), so that there can be only one irreducible represen-
tation of degree four. Therefore, L L ®,7? is equivalent
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to y*2, there exists a real nonsingular 4 X 4 matrix S = S(L )
such that

yB=LA4L%,SyPS . (52)
S may be assumed to have determinant equal to + 1, and is

determined up to a factor of + 1. The set of all such matrices
S provides an irreducible representation

SL{4,R)= SO(3,3).
A special Lorentz transformation x—x’ = Lx on M is

accompanied by a SO(3,3) transformation on D,:
A—A " =SA. By Eq. (3), S'is generated by — 1y*%; for if

L, =6 —w'y + - =(e “,, wherew,;, = — v,
are 15 real parameters, then
S=v,— %“)ABVAB + o= CXP{ - %“’ABVAB} (53)

satisfies Eq. (52).
One can construct a 21 representation of SO(3,3) onto
SO(3,3) as follows. Let I" denote six matrices defined by

0 s
reae® ) ’
g\ _ & ) (54)
and
, 0 *
Fh=2hk( ), 55
A PP (55)

where 1,k =1,2,3; A’ =123 and 1'=6,2"=5,3 =4
and g"* = diag(1,1, — 1). One may easily verify that the I"*
satisfy

[Ar? 4+ 0Pri =2, (56)

where I denotes the 8 < 8 unit matrix

0 ) ; (57)

rern = ("

0 — 1P
and
r{=L* MM~ (58)
where
S 0
M= (o S*—‘)’ 159)

S being defined in Eq. (53). Therefore, given Se SO(3,3}, the

map SO(3,3)—S0(3,3) defined by
L, =itr (M~ 'T*MIy) (60)

is a 2—1 representation of SO(3,3) onto SO(3,3).
Concomitant with the identification of * asa SO(3,1)
invariant symplectic form on D, is the reduction of SO(3,3)

symmetry to SO(3,1) defined by settingw,s =0 = w4-
According to this restriction, we have L 4, =8¢, L*; = 6%,

and L% =83 — o' + - = (e~ )%, where w5 = — wg,
are six real parameters. Se SO(3,1) is given by
S (@) = exp{iwqs S}, (61)

where S “? is defined in Eqgs. (22) and (23). Under the restric-
tion toa SO(3,1} subgroup of SO(3,3), the ¥*# decompose
into sets transforming as tensors under SO(3,1):

e—SeS =€, (62)
PLSY°S ' =7, (63)
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PSS T =7, (64)
and

S*P—L*,L* 85§ ' = SB, (65)
Let AeD, and £eD ¥; under SO(3,1),

A—SA (66)
and

EES L (67)
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The converse problem of similarity analysis is solved in general for the infinitesimal symmetry
transformations of any given inhomogeneous ordinary differential equation of the second order
X+ folt )X + £t )x = fo(t ). The completely general associated Lie algebra is obtained for equations
of this kind, which structure constants depend only on the chosen set of initial values £(0), £i(0),
£:(0), and f£,(0). The infinitesimal elements of the dynamical group of a Newtonian one-
dimensional linear system are also discussed, and some miscellaneous examples are given.

PACS numbers: 02.20. + b, 03.20. + i, 02.30.Hq

1. INTRODUCTION

Recently there has been an increasing interest in study-
ing the symmetry principles involved in classical mechan-
ics.! This interest is motivated by the identity of symmetry
groups operating in classical mechanics and quantum me-
chanics [as, for instance, the O(4) symmetry which operates
equally for the hydrogen atom as for the classical Keplerian
system?]. Indeed, there is the feeling that canonical quanti-
zation is not the main point in the transition from a classical
model to the corresponding quantum formalism.? Rather,
this common symmetry structure should be the guide for
having a complete and unambiguous quantization proce-
dure. Thus, several ‘“geometric quantization” schemes can
be found in the current literature.* As a consequence, if one
assumes that the complete set of symmetry operations per-
formed on an isolated system uniquely characterizes the sys-
tem, then a fundamental problem arises, namely, that of
finding the symmetry group associated with a given mechan-
ical system.

In this paper we examine some features of this problem
by means of the similarity analysis of a single particle’s mo-
tion in Newtonian mechanics. For the sake of simplicity, in
this note we shall only dwell on linear systems with one de-
gree of freedom. Specifically, here we obtain the infinitesi-
mal symmetry groups and present the Lie algebras associat-
ed with some second-order ordinary differential equations of
inherent relevance in mechanics.’

There are several motives for formulating this particu-
lar problem. First, the techniques themselves bear some
mathematical interest, since they are simple and general. In-
deed, we wish to remark that the problem one usually tackles
in similarity analysis is the determination of the general form
of the differential equations (of some required order), which
admit a given group as a symmetry group.® The converse,
and more interesting problem, of finding the Lie group of

¥ Supported in part (M. A.) by Direccién General de Investigacién de la
Universidad Catélica de Valparaiso, throngh DGI Grant No. 123.726/82,
and in part (J. K.) by Direccion de Investigacién de la Pontificia Universi-
dad Catolica de Chile, through DIUC Grant No. 50/81.
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symmetries of a given differential equation is much more
difficult to solve. Clearly, it is this converse problem which
we enface in this paper, and we claim that some systematic
methods exist for handling it.

Furthermore, in classical mechanics one usually visua-
lizes the symmetries of a system by means of transformations
which leave the Lagrangian (or the Hamiltonian) invariant.’
But dynamical systems, in general, have more symmetries
than those grasped by the symmetry groups of their Lagran-
gians or Hamiltonians.® One reason for this stems from the
fact that there may exist symmetry operations of the equa-
tions of motion which induce a gauge transformation of the
Lagrangian® (and, thus, of the Hamiltonian). One avoids this
gauge artifact (inherent in the canonical formalism and con-
trived to produce only a subgroup of the full symmetry
group) by considering the symmetries of the equations of
motion themselves. '°

Moreover, the “cloud of mystery” regarding the origin
of the accidental symmetries! neatly shows the necessity of
having a general procedure for investigating the symmetry
group of any given system. It seems that there has been some
lack of progress concerning this problem in the past because
one has thought that the intimate relation between conserva-
tion laws and symmetries has to be traced to the Lagrangian
and Hamiltonian formulations.'? However, the recent pro-
gress in the use of methods of continuous groups of transfor-
mations and local differential geometry in the study of the
equations of motion of classical mechanics'? reveals that the
demand of invariance of equations of motion yields not only
the conventional conservation laws, but also the (so-called)
accidental symmetries. Further, this approach throws new
light on the relation between symmetries in configuration
space and phase space,'* is capable of generalization to an
arbitrary system,'!® and may become relevant for quantiza-
tion.

It is well known, from the history of mathematics, that
the enormous bulk of knowledge in the field of differential
equations was strikingly coordinated by the work of Sophus
Lie.'s The symmetries considered by Lie’s approach to the
field of differential equations (i.e., similarity analysis) are of a
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very restricted kind, to be sure. In effect (for the case of one-
dimensional systems), in that approach one considers only
the symmetries generated by infinitesimal point transforma-
tions, of the form
t'=1t+ enltx), ()
x'=x4+€ltx),

where € denotes a parameter of smallness: 0 < e<€1 {together
with the induced, or extended, transformations on x, X, etc.),
in order to study the possibility of transforming among

themselves the solutions of an ordinary differential equation:

G (tx,x,%+) =0, (1.2)

say. It must be observed that, in contrast with the well-
known general result concerning first-order differential
equations,'’ differential equations of order higher than one
only exceptionally admit continuous groups of symmetry
transformations. In particular, if a second-order differential
equation admits continuous symmetry groups like (1.1),
these monoparametric groups generate a Lie group having
no more than eight essential parameters.'® Thus, for in-
stance, the equation ¥ = 0 admits the eight-parameter pro-
jective group of the (z,x) plane,'® while the equation
% = t* + x? admits no proper symmetry transformation of
the form (1.1), but the trivial one ¢’ = ¢ and x' = x.%°

Quite generally, one calls a symmetry of Eq. (1.2) any
prescription for transforming any solution of Eq. (1.2) into
another solution of the same equation. It is clear that, by
defining the composition of symmetries in the usual manner,
one gets associativity, and therefore the set of all symmetries
of Eq. (1.2} is a semigroup with identity {i.e., a monoid). It
seems, however, that the above definition of symmetry is too
broad. One can be led to very complicated and diverse pre-
scriptions giving the analytical descriptions of symmetries
(global integral symmetries, local differential symmetries,
space-time point symmetries, etc.) pertaining to a concrete
differential equation. There is, indeed, a “debarré d ’excess,”
since many (perhaps useful) recipes may arise as possible
symmetries according to the general definition stated above.

For instance, an interesting approach has been consid-
ered by Gonzalez-Gascon,?' following a generalization of
Lie’s concept of invariance of differential equations due to
Anderson et al.,”* while introducing the notion of local dif-
ferential symmetries. The local differential symmetry pre-
scriptions on ¢ and x (for one-dimensional systems) implicitly
include the transformations on x, X, etc., and are assumed to
transform any solution of Eq. (1.2) into another solution. The
set of local differential symmetries forms a monoid, which
does not behave as an infinitesimal group. Neither does it
generate a finite Lie group, since the iterative integration
process is impossible, because one would need to handle im-
plicity all the derivatives d "x/dt", n = 1,2,-., in order to
integrate. This is in strong contrast with Lie’s infinitesimal
point transformations, for it can be easily shown that the set
of all infinitesimal pointlike transformations generates a
continuous Lie group (as is well known, indeed: Lie’s
theorem), while the set of local differential symmetry trans-
formations does not. We think that this remark is important,
because in mechanics one is interested in symmetries not
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only as a tool for obtaining new solutions of the equations of
motion. Rather, one usually extracts dynamical information
from a given symmetry, whenever the symmetry is orga-
nized within a group structure. (This is so, even when the
laws of motion are unknown, as is the case for much of ele-
mentary particle physics.) Anyhow, it is the group-theoretic
viewpoint that makes symmetry a remarkably fruitful aid for
our understanding of dynamics, and many of the relevant
concepts on this issue arise already in classical mechanics.

This paper is organized as follows. We first discuss the
infinitesimal symmetry transformations of a given second-
order linear inhomogeneous ordinary differential equation,
and formally obtain the associated Lie algebra (Sec. 2). Then
we briefly present some miscellaneous examples of the pre-
vious formalism for the converse problem of similarity in
mechanics (Sec. 3). Finally, we analyze the infinitesimal ele-
ments of the dynamical group of some one-dimensional
Newtonian linear systems (Sec. 4).

2. THE INFINITESIMAL SYMMETRY
TRANSFORMATIONS OF X + fax + fix = fo AND THE
ASSOCIATED LIE ALGEBRA

Let us assume we are interested in the symmetry prop-
erties of an ordinary differential equation of the second or-
der, of the general form

x = flt.x.x), (2.1)

where fis a given function. The symmetry group of this
equation is realized by the set of point transformations
t'=Tltx),
(2.2)
x'=S(tx),
with nonvanishing Jacobian, endowed with the property of
leaving Eq. (2.1) form invariant. Clearly, these transforma-
tions are active point transformations which transform one
solution of Eq. (2.1) into another.

Of course, to solve this similarity problem one needs to
find first the generating functions 7(t,x) and € (t,x) [cf. Eqgs.
(1.1)] of the symmetry transformation. The corresponding
twice extended transformations, up to the first order of ap-
proximation, are?

X =%+ €06, + (0, —n,)x — 5%, (2.3)
and
¥ =%+el6, —27,) = 3n.x)5%
+ 6(0" + (zext - 771:)5‘
+ (exx - 27’):1 )xz - nxxx3) ’ (24)
where wehave writtenx’' = dx'/dt'andx' = dx'/dt’. Hence,

from the assumed invariance of Eq. (2.1), the following first-
order relation obtains:

O + (2605 — Mo + (O — 27, 5% — 77, %>
+ (6, — 277,) — 3. %) flt,x,%) — nf,{t.6.%) — 6f, (t.x,%)
=6, + (6. — . % — 7,.X%) fi(t.x,%)=0, (2.5)
which holds equally for all (¢,x,%). This equation is the start-

ing point in the similarity analysis of the second-order differ-
ential equation (2.1).
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Further analysis then requires the explicit form of the
function f{¢,x,x) to be known. Because it corresponds to a
sufficiently general situation, of much physical relevance, in
this paper we consider the linear inhomogeneous ordinary
differential equation of the second order, i.e.,

X+ filex + file)x = folt) . (2.6)
Let us substitute Eq. (2.6) into Eq. (2.5). We immediately get
N =0, (2.7)
O —2m + 2, =0, (2.8)
26, — 1 — Nfo—fixhn. +Lm + =0, (2.9)

0, + (fo —fix)0; + 126, + 1,6
—2fo =S¥, —(fo—Sixn=0. (2.10}
Thus, from the first two equations above it follows that

7(tx) = (t)x + @,(t) (2.11)
and

6 (6.x) = (Ba(t ) — Lolt )1 )1® + st Jx + Balt), (2.12)
where ¢, ..., ¢, are functions of ¢, which shall be formally
determined from the last two equations [Egs. (2.9) and
(2.10)]. Indeed, after performing some reductions, one easily
arrives at the following system of linear homogeneous differ-
ential equations:

¢1 "fz‘lAsl + (fl "']'2)¢l =0 ’
62+ (4, — [ —26)b, + (2f, — o f, — F)s

= (fofs —folb1 — 3feb1, (2.13)
2¢3 = 3o + &2 _fzész —f:z¢2 ’
b+ Fsbs + fis = 2o, +fops — fobs »
wherefrom, clearly Eqgs. (2.11) and (2.12) become
Ntx) = g%(@1a(E )X + 8,,(2)) (2.14)

0(1,%) = ¢ ({$1.(t) — £t 11 (0 )} + o (1% + b 2)
(2.15)
The set of functions ¢, ,(¢), ..., $4.(t), a = 1,...,8, corre-
sponds to a basis of the linear system (2.13), and the ¢°,
a =1, ..., 8, are eight constants of integration, which behave
as a set of eight essential parameters of the Lie group; i.e., in
the neighborhood of the identity we have 6¢g° = eg”, with
a=1,..8and 0<e«l.

Of course, in order to determine a set of basis functions
$1,(E), - Pa.{t) the functions filt), filt), folz), should be
known. However, we have already enough information to
formally obtain the Lie algebra of this symmetry group, as
we shall see in what follows.

From the previous discussion we conclude that the full
symmetry group of the linear differential equation (2.6) has
the following set of infinitesimal operators:

X,(tx) = n,(tx)9, + 0,(t.x)9, , (2.16)
where
NaltX) = $ra (0% + 4 (0) 5 (2.17)
8,(tx) = (B.(t) — £t ), o (1)} %7
+ Byaltlx + daalt), (2.18)

a =1, .., 8, are the infinitesimal generators of this group in
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the (t,x)-realization and in some g-parametrization. These
operators satisfy the algebra

[XoX, ] =S X s (2.19)

so we have
anc = [”asnb!] + [aa’nbx] ’ (220)
a0 = [0 ] + [02:06< ] > (2.21)

where, of course, the square brackets denote antisymmetri-
zation of the indices “@” and ““b >’ only. From Egs. (2.17) and
{2.18), we have

nat = q.sl.ax + ¢24a ’

7]ax = ¢1.a s . .
eat = _.f1¢l.ax2 + ¢3Aa'x + ¢4.a ’
eax = 2(¢1.a '—f‘2¢l.a)x + ¢3,a ’

where we have also made use of Egs. {2.13). Hence, a
straightforward calculation gives

§b¢1.c = [ ¢1Aa’¢2.b - ¢3.b] - [ ¢La’¢2.b] ’
3b¢z.c = [ ¢2.m¢z.b] - [ ¢1.aa¢4.b] ,
Sasbse = [ ¢14a’¢4.b + 2f2fap — %f6¢2.b]
- 2[ ¢1.a’¢44b] +% [ ¢2.a’¢2.b —fszzb] ’

(2.22)

(2.23)
(2.24)

(2.25)
fzb¢4.c = [ ¢2.a’¢4Ab] - [ ¢3.a!¢4.b] ’ (2.26)
and
So(Brc —fobr)
=4 [ Brasbas —fidbrs + (21 —Fidbrs
+ 2351 — [ $rarbin] - (2.27)

These are identities which hold for all ¢; thus let us consider
them atz=0.

This brings into the fore the initial value problem of
Egs. (2.13). For reasons which shall become clear presently,
we introduce the following parametrization to represent the
Lie algebra; we first define the initial data:

¢' =7(0,0), ¢*°=6(0,0),
? = 0’0 ’ 4:‘9 0)0 ’
7 =700, ¢ ,(0,0) (228
¢ =7,00), ¢°=86,00),

g =17,00), ¢=16.(000),

and then use these ¢’s as the essential parameters of the
group. So, one easily finds

61000)=8us » $14(0) =545 +£(0)5,s »
$20(0) =841 s $24(0)=8,3 ,

&240 (0] = 25(27 b4 ¢3,a (O) = 5:14 ’

¢4Aa(o) = 5a2 4 ¢4.a (0) = 5:16 ’
as the chosen values of the linear basis.

Of course, a glance at Eqs. (2.23)—(2.27) shows that, in
order to take advantage of the whole set of chosen initial data

given in Egs. (2.29), we have to make some derivatives in
these equations [(2.23)~(2.27)], and substitute from Eqgs.

(2.29)
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(2.13) where needed. In this manner, we obtain
forbre =3[ brabrs +Fobrs + i —fi) 624 ]
— [ frasbss + a2 ] (2.30)

be ‘1.524; = - [ ¢Laa¢4.b] - [¢1.a’¢4.b] + [ ¢2.a’$2.b] s
(2.31)

fﬁb &2.6 . . .
= [ ¢1.a fo( ¢3.b - 2¢2.b _f2¢2.b) +f2¢4.b + (2f1 —fz) ¢4.b]

+ [ $1.0:¥obrs — 20635 — Fibas]
— (@4 —f2 =2 [ brabrs] + [ Brarbos] s

fon b _ _
=fo [ ¢2.a 92¢2.b - ¢3.b] + [ ¢2.a —f2¢2.a - ¢3‘a ’¢4.b]

+ % [ - 3ﬁ)¢1.a - éz.a +.f2¢2.a - (2f1 *fz) ¢2.a ’¢44b] .
(2.33)

Therefore, upon substituting from the initial data (2.29)
into Eqs. (2.23)-(2.26) and Egs. (2.30)-(2.33), the structure
constants may be evaluated, as referred to the chosen basis of
the algebra. We present our results in Table I. In Table IT we
display the Lie algebra associated with the symmetry point
transformations of the general linear inhomogeneous ordi-
nary differential equation of the second order. A detailed
study of this algebra will be published elsewhere.’

Interesting enough, the algebra is completely general
for differential equations of the form (2.6), and one obtains
the structure constants without having a detailed knowledge
of the infinitesimal operators X, (z,x), which, of course,
would require the knowledge of the functions f(t), fi(t),and

(2.32)

TABLE I. The nonzeroth structure constants of the Lie algebra associated
with the linear differential equation X + f5(f Jx + fi(f bx = folt).

f};:l, f;s=1

%e'_-l’ f§4=1

;g=ly f§6=_1

f?7 = 2! fgs =f2(0)y

= —1A0), fis=340
T7=1» f;8=2, f§6=1

f?S:fZ(O)v f?szlv f;s:_lr f:5=l

2= —A0+140, f1; =270)
?4 = —f;>(0)» f(;e = — f(0)
5= —41A0), fi5 =140

fg7=1r f§6=1, f26= -1

L= =20+ 40 +1/30), [l = —£(0)£0)
e = —340), fis= —/fi(0)+ 150 +1/30)
f;s = 5/&(0]: fgs = £{0), f;7 =1

fis= =400, [l = —1A4(0),

LA
68_1

= — A0+ 140, £ =140
fis =1, f§7 =1

f(t). The algebra, however, depends formally and exclusive-
ly on the initial values f,{(0), £1(0), £5(0}, and £5(0).

The outcoming commutation relations also depend on
the chosen set of initial conditions; but this change is inher-

TABLEII The Lie algebra associated with the differential equation % + f,(¢ }x + f1(¢ )x = fy(r ). One gets the commutator [X,,, X, ] at theintersection of the ath

row with the b th column.

X, X, X, X, X; X, X, X,
X, — 100X, /00X, + £{0)X,
) X,
X, 0 {1.£(0) — £1(0)} X, + 260X + (1./3(0)  — £o(0)X, —fOL0, X, —f0Xs 2X;+ X, 3 /(01X
+£(0) — 2£,(0)} X, + {445(0) - £1(0)} X,
X, + £,{0)X, X
X, A0 = 140X, 0 — 1LA(0)X X, + 3/00MX, + {1.£3(0) 0 Xs +’Jé’:;,
+150) - /03X,
— X, + 1 501X, X, + 10X
- X+
X, — 201X, + (2,0 O)X, 0 0 ST s 2
.f()X+If() 1 f0X, +1LAOX, X, X 0
—£0) - 11301},
X, Sol0)X, - X, 0 0 Xs — 4 folO)X; — X 0 X5
— 3/60)X, — 501X — X, — £{0)X;
Xs — f,{0)X, — X — X, + X
XS 0 0 2! 0 7 - 0 O 6 1 O > N B
OO ol + A0 CIAOX, 4 LAON, 0 —yho, " 0
+{A0) - 1AO0)X,  —14(0)—1f30))X,
Xe — X, + £,(0)X 0 — X, X X; — X, + 1 /00X, 0 0 X,
X, —2X,— X, —X, - X, 0 — X, 0 0 0
X — X+ 3000, —X, —2X, —} £{0)X; 0 — X 0 - X, 0 0
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ent in Lie’s formalism, since different sets of initial condi-
tions correspond to different parametrizations of the group
and, thus, to a mere change of the basis of the algebra.?*

Our choice of initial conditions {cf. Egs. (2.29)], any-
how, is rather simple, since it is attached to the generators 5
and & themselves [cf. Egs. (2.28)]. Indeed, we have preferred
this parametrization because: (i} we want to have a uniform
formalism in order to be able to compare the symmetry
groups of different linear and nonlinear systems; (ii) the ini-
tial value definition for the ¢’s is given directly in terms of
n{t,x) and 6 (t,x}, and derivatives thereof, at (0,0), and not in
terms of the initial values of the linear basis @,(¢ ), ..., ¢,(¢ ), and
their derivatives; (iii) clearly, for a nonlinear system there is
no linear basis at all [however, definition (2.28) still works
the same]; (iv) finally, the chosen parametrization is precisely
the one that brings the infinitesimal operators of the projec-
tive group (in two dimensions) in the standard basis adopted
in the current literature.>

3. SOME MISCELLANEOUS EXAMPLES

With the aim of exhibiting the explicit form adopted by
the elements of the infinitesimal symmetry group of an equa-
tion of the type of Eq. (2.6), in this section we present four
interesting instances, taken from elementary mechanics. For
the sake of concreteness we describe this matter in a sketchy
manner.

Let us briefly consider the symmetry properties of the
following linear systems in one dimension: the free particle,
the free falling particle, the simple harmonic oscillator, and
the damped harmonic oscillator.

(a) Free particle: We have X = 0; i.e.,

fo=fi=f£,=0, (3.1)
wherefrom, according to the previous formalism, the well-
known generators of the infinitesimal symmetry transforma-
tion follow:

(tx)=q'+¢r+q't* + (¢ + ¢* )x,

the chosen g-representation are
X,=3,, X,=4,, X,=13,,
X,=xd,, Xs=xd,, Xg=13,,
X, =123, +txd,, Xy=1x8, +x%, .

(3.3)

Clearly, these are the well-known infinitesimal operators of
the group of projective transformations in the (¢,x) plane,?
where we recognize the special projective tranformation op-
erators of translations (X, and X,), of stretching (X; + X,),
and of rotation (X, — X;), which also pertain in the confor-
mal transformation of the plane.

The g-parametrization, as shown in Eq. (3.2), looks
somewhat clumsy; however, this is precisely the parametri-
zation that brings the infinitesimal operators of the projec-
tive group (in two dimensions) in the ordered scheme pre-
sented in Eq. (3.3), which corresponds with the standard
basis of this algebra adopted in the current literature. As we
have already said, this is one of the main reasons we have for
adopting this particular representation. For the sake of com-
pleteness we include herein the well-known Lie algebra of
the equation X = 0; see Table III.

(b)) Free falling particle: Now we set X 4+ g =0; i.e.,

fo=—8, fi=£=0. (3.4)
So we get
ntx)=q'+ ¢t + 917 +1g¢°° +(¢° + ¢t )x, (3.5)
Otx)=q"+q° +18t%(q* —2¢°) — (¢’ +1gg’} ¢t

—1g¢°t %)+ (" + (¢’ — 38’ )t + ¢°X%,  (3.6)

and, thus,

X, =0,, X,=0,, X,=t(3, —gid,),

X4=(x+%gt2)ax,

Xs=x(0, —gtd,)— L gt(x+1gt?)d, , (3.7)

Xo=10,, X,=t{td, +(x—1gt?d,},
Xy=(x+1gt?){ed, +(x —1gr?)d. ],
wherefrom the Lie algebra easily follows (cf. Table IV).

(3.2) (c) Linear harmonic oscillator: Now we consider the
O(t,x)=q* +q° +(g* + q't )x + ¢°* . symmetries of the differential equation
Hence, the eight infinitesimal operators of the Lie algebra in ¥+ wix=0; (3.8)
TABLE III. The well-known Lie algebra of the projective group in the (¢, x) plane.
X, X, X, X, Xs X X, X,
X, 0 0 X, 0 0 X, 2X, 4+ X, X,
X, 0 0 0 X, X, 0 X, X, +2X,
X, —X, 0 0 0 — X5 X, X, 0
. 0 - X, 0 0 X; — X, 0 X,
s 0 - X, X, —X; 0 —X,+ X, X, 0
o —X, 0 - X, X, X, — X, 0 0 X,
X, —2X,— X, - X, - X, 0 — X, 0 0 0
X, — X, — X, —2X, 0 — X, 0 —X, 0 0
214 J. Math. Phys., Vol. 25, No. 2, February 1984 M. Aguirre and J. Krause 214



TABLE IV. The Lie algebra of a free falling particle.

X, X, X, X, X, X, X, X,
X, 0 0 X, — %X, X, — X, X, 2, + X, X, + 38X,
X, 0 0 0 x, X, — igX, 0 X, X, + 2X,
X, — X, + 28X, 0 0 0 _ X, — gX, X, X, 0
X, —gX, —X, 0 0 X, + igX, —X, 0 X,
X, X, X, +i8X, X, +gX,  —X,—igX, 0 — X+ X, X, 0
X, —x, 0 _X, X, X, — X, 0 0 X,
X, —2X, - X, —X, _X, 0 _X, 0 0 0
X, —X,—3X, —X,_2X, 0 X, 0 _X, 0 0
that is, we set The Lie algebra corresponding to the classical linear har-
fHi=wy, fo=£=0. (3.9) monic oscillator is presented in Table V.

Accordingly, we calculate the infinitesimal generators of the
symmetry transformations. We obtain

N(tx) =q' + (1/w0)g> sin(wet ) cos(wyt )
+ (1/wy)?q sinY(wqt ) + {gcoswot )
+ (1/wg)g® sinjwgt )} x ,
8 (tx) = ¢° cos(wot ) + (1/w)g® sinfwot ) + {g*

(3.10)

— @® sin(wgt ) + (1/w,)g” sinfwyt ) cos(wo? )} x

+ {g® cos(wet ) — weg’ sin(wet )}x*,  (3.11)
while the infinitesimal operators come out as follows:
X, =d,, X,=(cos(wet))d,,
X5 = (1/w,) sin(wt ) {{cos(wet ))d, — (@, sin(wet )3, } ,
Xi=xd,, Xs=x{(cos(wot))d, — (o sinlwet )X, },
(3.12)

X = ((1/w,) sinfwyt ), ,
X; = (1/wy) sinfwgt ) [{{(1/wy) sin(wgt )3, + (cos(wet ))xd, ],

(d ) Damped harmonic oscillator: Finally, we also con-
sider the equation of motion

X42Ax +wix=0; (3.13)
ie.,

fo=0, fi=w;, =24,
Hence, after a straightforward calculation, we get

N(tx) = ¢' + (1/w)g* sin(wt ) cosiwt } + (1/w)*q’ sin}(wt )

(3.14)

+ &M {g’(cos(wt ) + (A /w) sin(wt )
+ (1/w)q® sin(wt )}x, (3.15)
0 (t.x) = e ~*{g*(cos(wt ) + (A /o) sin(wt )) + (1/w)g® sin(wt )}
+ {¢* — ¢’(sin(w? ) + (A /) cos|wt )) sin(wt )
+ (1/w)g’(cos(wt ) — (A /w) sin(wt )) sin(wt )} x

+ é* {g5(cos(wt ) — (A /w) sin(wt))

X,y = x{((1/@y) sin(wqt )3, + (cos(wyt %3, } . — (W /w)g’ sin(wt )}x?, (3.16)
TABLE V. The Lie algebra of a classical linear harmonic oscillator.
X, X, X, X, X, X, X, X,

X, 0 — 03 X, X, - 20} X, 0 . X, 2X; + X, X,

X, 0} X, 0 0 X, X, — 0} X, 0 X, X, +2X,

X, — X, + 208X, 0 0 0 — X, X, X, 0

X, 0 - X, 0 0 X — X 0 X

X 0t X, —X, + w3 X, X - X5 0 X+ X, X, 0

Xs -X, 0 —X, X, X, —X, 0 0 X,

X, —2X, — X, - X, -X, 0 —X, 0 0 0

X, - X, — X, -~ 2X, 0 — X, 0 - X, 0 0
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TABLE VI. The Lie algebra of the damped harmonic oscillator.
X, X, X, X, X5 X, X, X,
X, —AX,
X, 0 — 02X, _‘ Z(UZX: 0 24X —wiX, X,— 24X, 2X, + X, X,
X, +2X X, +2X
X wi X, 0 — X, X ) N 0 X, ! ¢
2 o4e 6 2 — (@ — A2X, ° +AX,
~ X, + AX.
X, N lzan? ¢ AX, 0 0 — X5+ AX, X, X, 0
X, 0 —X, 0 0 X, — X, 0 X,
— X, —2AX. — X, +AX,
X, — 24X, + 0} X, N (w; 3 2)/‘;7 Xs — AX; — X 0 B X, 4 X, 0
X, —X
X, — X, + 24X, 0 - X, X, ; B X: 0 0 X,
X, —2X,— X, — X, —X, 0 — X, 0 0 0
— X, — 2%,
X, — X, B X, ¢ 0 — X, 0 - X, 0 0

where we have introduced w = (w3 — A ?)'/. In this case, for
the infinitesimal operators, we obtain

X,=9,, X,=(l/w}e *(wcoswt)+ Asinfw?))d, ,
X; = (1/w) sin{wt ){(cos(wt ))d, — (o sin(w? )

+ A cos(wt )xd, | ,
X,=xd,,

X, = (1/w)eMx{{wcos(wt ) + A sin(wt ))d, — (@} sin (@t ))xd, ] ,

(3.17)
X, = (1/w)le~* sin(wr )d, ,
X, = (1/w?) sin(wt ){(sin(w? ))d,
+ (w cos(wt ) — A sin(w? ))xd, | ,
X, = (1/w)e*x{(sin (w1 ))d, + (@ cos(w? ) — A sin(wt ))xd, | .

The Lie algebra is given in Table V1.

Finally, we wish to mention here the obvious fact that
the one-dimensional time-independent Schrédinger equa-
tion comes quite directly under the scope of the similarity
techniques as presented in this paper. However, given its
importance, the similarity analysis of the Schrodinger equa-
tion deserves a separate treatment.’

4. THE INFINITESIMAL ELEMENTS OF THE
DYNAMICAL GROUP OF A ONE-DIMENSIONAL LINEAR
SYSTEM

Notwithstanding the mechanical interest of the linear
examples presented in the previous section, thus far our dis-
cussion of the converse problem of similarity analysis, as
applied to Eq. (2.6), has been purely mathematical. In order
to come closer to the spirit of mechanics, some basic consid-
erations on space and time are important in our approach. So
let us recall some features of Newtonian mechanics.

As a typical example, we consider a classical system
formed by two particles, which only interact internally, and
which are constrained to move on a fixed straight line. Be-
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cause of the Newtonian assumptions on the nature of space
and time, the Galilean transformation is a symmetry of the
system. However, once we separate the center of mass and
introduce the internal configuration variable, x = x, — x,
[whose equation of motion is precisely Eq. (2.1), say], then
the requirement of Galilean invariance becomes in the trivial
symmetry transformation: t' =¢ — 7 (or¢t’' =t)and x' = x,
while the center of mass performs the Galilean boost. From a
mathematical standpoint, it is clear that the differential
equation of motion (2.1) has more symmetries, in general,
than the trivial one. Clearly, these new [cf. Egs. (2.2})] sym-
metries are not attached to the absolute properties of Euclid-
ean space and Newtonian time. They are internal symme-
tries which transform allowable internal motions into
allowable motions of a classical system.

However, time is a sacrosanct affine parameter in New-
tonian mechanics. In effect, in order to avoid artificial
“forces,” which otherwise would be acting on the center of
mass, one has to consider instead of the group alluded to in
Eqgs. (2.2), the subgroup of internal point transformations

t'=alt—1),
(4.1
x'=S(tx),

(where a and 7 are constants), which leave the equation of
internal motion [cf. Eq. (2.1)] form invariant, and, hence,
which are consistent with the Galileo transformation of the
center of mass. In Eq. (4.1) we have included the possibility
of a change in time scale as a symmetry of the dynamical
system.

The transformations (4.1) form a Lie group, denoted by
G, (2). Following Mariwalla,*® G,, (2) may be called the dy-
namical group of the system; i.e., the dynamical group re-
flects the internal symmetries of the system which are consis-
tent with the Newtonian time hypothesis and, thus, with the
Galilean symmetry of the center of mass.

In this section, then, we study the infinitesimal point
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TABLE VII. The associated Lie algebra of the dynamical group of a one-dimensional linear Newtonian system.

X, X, X x, X
10, X, — 1 S0, 0 Yo — £0

X, 0 o, Ry o0 2 = [0V
f;(p)X6 0 —_ 0 X2 0

X, 1A, 1 £(0MX,

= X1 + LAOMX, 0 0 0 Y
% — 20, L0 :
X, o, - X 0 0 — X,
X, — X, + £{0)X, 0 —X, X, 0

transformations belonging in G,, (2), for a one-dimensional
linear system. In this case, according to Egs. (4.1), it is clear
that for a linear system Eqgs. (2.11) and (2.12) become

n(t) = $lt), (4.2)
0 (£.x) = @s(t Jx + B4lt) (4.3)
since now we have
¢1(t ) =0,
{4.4)

$At)=¢q" +q’t,
while ¢, and ¢, still have to satisfy Eqgs. (2.13). Moreover,
these equations become now in the identity

(@' +’t)2(t)+24°2(t)=0, (4.5)
which must hold for all ¢, and where we have written
RE)=£) =1 30e)—1h), (4.6)

plus two linear differential equations for ¢, and ¢,; namely,
28, = —(d/dt){(g" +¢’0) 1))

s+ Lo+ /163 =20+ g + @) fo—fobs -
The first equation in (4.7) gives

$i(t)=g"—4lg" + 1) fol), (4.8)
and therefore the second equation (4.7) becomes
Ba +2b4 + f1ds

=ilg' + ¢t )2 — ) — g* — 287 /s - (4.9)

The identity (4.5) is an additional condition which must
be satisfied by the given functions f£,(t), f5(¢), and fy(¢). This
brings into the fore an interesting classification of the prob-
lem. We distinguish the following cases.

Case I: When £2 (t) = 0, then ¢ and ¢> are two arbitrary
independent parameters.

Case 2: When (2 () = const#0, then necessarily we
have ¢> = 0. This means that there is no change in time scale
allowed as a symmetry transformation.

Case 3: When {2 (t) = at ~?, a#0, then ¢' = 0, which
means that the change in time scale may be a symmetry
while the time translation is not.

Case 4:If £2(t) = a(l + bt?)~", with ab 0. This re-
quires > = bq';i.e., 7 = ¢*(1 + bt ), which means that, actu-

(4.7
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ally, there is no symmetry of time translation.
Case 5: Here we consider all the remaining possibilities.
Clearly, this means g' = ¢> = 0, and therefore t ' = ¢.
Furthermore, if one considers the general procedure we
have to follow in Sec. 2 to obtain the Lie algebra, one imme-
diately observes the well-known rule:

¢° =0=X, =0, (4.10)

for having the subalgebras associated with the subgroups
one obtains by the elimination of some of the parameters.
(The meaning of this rule is obvious.) Hence, a glance at Egs.
(2.28) shows that, because of Egs. (4.2), (4.3}, and (4.4), in the
present case we have, quite generally, ¢° = ¢’ = ¢% = 0; i.e,,

Xi=X,=X,=0. (4.11)

In other words, the elimination of these three operators of
the general Lie algebra, presented in Table II, immediately
gives us the most general Lie algebra associated with the
dynamical group of a one-dimensional linear system in the
context of Newtonian mechanics. We present this algebra in
Table VII. This algebra corresponds to case 1 above (i.e.,
2 = 0). As examples of this case, we mention the free parti-
cle and the free falling particle, whose dynamical group alge-
bras can be read easily from Table VII. The damped har-
monic oscillator and the simple harmonic oscillator pertain
in case 2 above (since 2 = w); i.e., we have

X,=X,=X,=X,=0, (4.12)

wherefrom the corresponding algebra follows immediately
(see Table VIII).

TABLE VIIL The Lie algebra of the dynamical group of the one-dimen-
sional damped harmonic oscillator {or, when A = 0, the simple harmonic
oscillator).

X, X, Xe X,
X, 0 —02X, 0 X,— 24X,
X, w2 X, 0 X, 0
X, 0 —X, 0 —X
X, — X, + 24X, 0 X, 0
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A modified definition of the index of degree p of a finite-dimensional representation of a simple Lie
algebra is given. The definition applies equally to even and odd p. The correspondence between the
earlier definitions of indices (even p} and anomaly numbers {odd p} is pointed out as well as the

relation to Casimir invariants of the algebra. A closed formula for the fifth-order index is derived.

PACS numbers: 02.20.Sv

The index of order k of a finite dimensional representa-
tion p of a simple Lie algebra L with complex or real param-
eters is a rational number (a suitable normalization makes it
an integer) associated with p. There are three ways of defin-
ing itin the literature: as a certain & th order derivative of the
character y ( p) of the representation p of the Lie group evalu-
ated at the origin, or in terms of scalar products of weights of
p, or as the trace of a Casimir operator of degree k. As long as
one is interested in indices of degree 2 only, there is little
difference or relative advantage in using any of the defini-
tions. However, they are quite different for indices of higher
order.

The practical value of the indices is in relations they
provide when tensor products or tensor powers (with or
without a permutational symmetry) are decomposed into di-
rect sums of irreducible components, or when representa-
tions of a Lie group/algebra are reduced to direct sums of
representations of subgroups/subalgebras. For exploitation
of these properties see Refs. 1-6.

The purpose of this paper is to provide a new definition
of the index of the representation p of L as the trace of a
suitably chosen set of Casimir operators of L. The main value
of the new definition is that it provides more relations
between the “new” indices than there are between the “old”
ones, and the structure of these relations is more uniform as
to the degree of the index and the type of the Lie algebra.
Consequently, the applications are more restrictive, i.e.,
more powerful. For the first time we derive here an explicit
expression for the fifth degree index of the representations of
the Lie algebras of type 4, (n>5) and explain the relation
between different definitions of the indices.

1. SOME PROPERTIES OF THE “OLD” INDICES

Here we recall some of the properties of the usual in-
dices which will be needed later on in the paper.

Let L be a simple Lie algebra, and let p be a finite repre-
sentation of L. The (second-order) index /,( p) of the repre-
sentation p, as defined by Dynkin,’ is the trace of the second-
order Casimir operator on the representation p. Its value
when p is irreducible is given by
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Lip)=d{p)A.A + 9), (1.1)

whered ( p)isthedimensionofp, (4,4 + &§)istheeigenvalue
of the Casimir operator, A and 8 being respectively the high-
est weight of p and the sum of all positive roots of L. The
Dynkin index has many useful properties. Let p, and p be
any two irreducible representations of L. Then the tensor
productp, ® pz decomposes as a direct sum of Virreducible
components p;:
N

Pa®Pp =jflpj' (1.2)

The Dynkin index /,( p) satisfies the sum rule

d(pallipe)+d(pellps) = 3 Lp;) (1.3)

j=1

As early as in 1965, Biedenharn? briefly considered the
third-order index / ;{ p) [see Eq. (1.6)] for some v especially in
connection with the SU(3) group, and noted its proportional-
ity to the third-order Casimir invariant of the SU(3). A gen-
eralization of the Dynkin index was undertaken in Ref. 3. It
is based on the observation that /,( p) can also be written as
L(p) = Z,,(M, M), where the summation extends over all
weights M of p and (M, M) is the standard scalar product in
the root space of L. The index /,, ( p) of order 2k of the repre-
sentation p was then defined® as

Li(p)= XM M), k=012 (1.4)

M
It was shown™* that 1, ( p) possesses some of the useful prop-
erties of [y p) = d ( p) (dimension of p) and /,( p) (Dynkin type)
for some values of & > 2 and/or for Lie algebras of several
types. One of the general properties of /,( p) which refers to
the product (1.2) is an analog of (1.3):

ldpa®pp)=d(p)ldps)+d{ps)ldp,)

+ 22D L p i) = 3 L)

(1.5)

Here n denotes the rank of L. Extensive tables of d ( p), I,{ p),
and /,( p) are found in Ref. 5. Sum rules similar to (1.3) and
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(1.5) for I,,,, k> 2, hold only for Lie algebras of certain
types.> Equation (1.4) cannot be used to define odd-order
indices. It turns out,® however, that the quantity

1,(p)= ;(v, MY, p=012,-, (1.6)

where vis an arbitrary but fixed nonzero vector, has a behav-
ior similar to that of an index for even and odd values of p. In
particular, one has for the tensor product (1.2)

Hpaspa)= 3 P tilpall; lps
= > Lilp) (1.7)

Moreover, a suitable choice of the fixed vector v makes /;( p)
equal® to the triangle anomaly number”?® of p. This fact has
been implicitly noted also in Ref. 2 for the case of SU(3)in a
different context.

Explicit algebraic expressions are computed for /,( p)
and /,( p) in Ref. 3, for /;( p) in Ref. 6, and the relation
between/ ,(p)and/,(p)for p = 2 and 4 in Ref. 6 allows us to
find also/;( p)and !/ ;( p)for any p. For other degrees one has
to use directly the definitions (1.4) and (1.6). Even then the
evaluation of /, or /, does not represent a serious problem.
Indeed, the summation over all weights can be replaced by
the summation over the Weyl group orbits of weights pro-
vided one knows the orbits (i.e., dominant weights of p) and
their multiplicities. The multiplicities can either be found
from the new extensive tables® or they can be computed us-
ing, for instance, the fast algorithm of Ref. 10.

In Ref.11, a new definition of the fourth-order index has
been proposed. The present work is its generalization.

2. CHOICE OF CASIMIR INVARIANTS AND DEFINITION
OF THE ‘NEW’ INDEX

The new definition of the index of representation of gen-
eral order p offered here [Eq. (2.10) below] eliminates the
drawbacks of the indices /,, and /; namely, dependence of
their properties (or even the existence of these properties) on
the type of the Lie algebra L and the dependence on the
choice of the vector v. It relates naturally the indices to the
Casimir invariants, but hinges on a particular choice'' of the
basis of the Casimir invariants.

Itis known'? that any simple Lie algebra L of rank » has
exactly n fundamental Casimir invariants {, }. For exam-
ple, for the Lie algebras 4,, they are ,, p = 2, 3,...,n + 1,
where I, denotes the fundamental Casimir invariant of de-
gree p. Their degrees are recalled in Table I. Thus any other
Casimir invariant of L is a polynomial of the n fundamental
ones. We notice that the choice of the # fundamental Casimir
invariants (i.e., the basis) is by no means unique. For exam-
ple, we may replace the fourth-degree invariant 7, by

I =I,+cl? +cI, (2.1)

for arbitrary constants ¢ and ¢’. However, we eliminate most
of the arbitrariness of the choice in the following way. Let z,,

220 J. Math. Phys., Vol. 25, No. 2, February 1984

TABLE I. Degrees of the fundamental Casimir invariants of simple Lie
algebras.

Lie algebra Degrees

A4,_, (32) 2,3,4,.,1

B, C, (12 2,4,6,..,2]

D, (133 2,4,6,.,21-2,1

E, 2,5,6,8,9,12

E, 2,6,8,10,12, 14,18

F, 2,6,8,12

G, 2,6

Ey 2,8, 12, 14, 18, 20, 24, 30

t,,...,t; be abasis of the Lie algebra L with the Lie multiplica-
tion table

[t..t.]=cti (mvA=12,..4d) (2.2)

with the structure constants cf“,, where a summation over

repeated Greek indices is understood. Further, let 4, and B,
be two Casimir invariants of L of order p and g, respectively,
which, however, are not necessarily fundamental. In terms

of the basis of the Lie algebra, they are written as

i
Ap =a LA el

(2.3)

R B,
Bq =b ., t,uz"'t#.,’

where the coefficients @ "** and 5" are symmetric with
respect to permutations of superscripts. Then we define an
inner product (4,, B,) as

(Ap’ B,)= 6pqa#‘m#pb

Bitg?

(2.4)

where we have lowered the Greek indices in b ™7 using the
Killing metric tensor g,,, defined by

¢ 0. (2.5)

It is easy to verify that the inner product (4, B, ) is indepen-
dent of a particular choice of the basis #,, i = 1,...,d, of L. By
the linearity we can extend the definition of the inner pro-
duct to any two Casimir invariants.

Apart from normalization constants, a unique choice of
the fundamental Casimir invariants of L then can be made.
Let us illustrate it on the example of 4,,. We choose

S=1L, J,=I, (2.6)
since I, and I, are unique Casimir invariance of the second
and third order, respectively, for 4,. However the fourth-
order Casimir invariant has the ambiguity expressed in Eq.
(2.1). We choose!! constants ¢ and ¢’ so that J,, is a fourth-
order Casimir invariant satisfying the orthogonality condi-
tion

Vall)) =0, (ay)=0. (2.7)
Similarly, constants ¢’ and ¢” in expression Js = I

+ ¢'LI; + ¢"1I, are determined by (see Sec. 8 for explicit
form of J)

Wsd2d3) =0 (2.8)
as well as by the requirement that J; is of purely fifth order.

8., =ctrlad, adt),
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As for the sixth-order invariant J;, we demand the validity of
Vollo)’) = Ve lls)') = Uelrl) =0, (2.9)

since (I,)%, (I5), and I, are also Casimir invariants of the
sixth order. We can continue this process to determine high-
er order invariants J,’s at least for compact simple Lie alge-
bras. We note that some Lie algebras may lack a fundamen-
tal Casimir invariant /, for some integer p. Then, we have, in
general, J, = 0 identically for any such p. For example, all
exceptional Lie algebras G,, F,, E, E,, and E; as well as 4,
and A4, do not possess'” any genuine fundamental fourth-
order invariants so that J, = 0 for these algebras.!' As we
noted elsewhere,'? this fact implies the validity of a quartic
trace identity for these Lie algebras. Also, for a givenp, J, is,
in general, unique, apart from an overall normalization con-
stant, except for the Lie algebras D, for n an even integer,
where we have two linearly independent nth-order funda-
mental Casimir invariants J,, and J,, satisfying the orthogon-

ality condition (J,,, :),,) = O as in Ref. 11 for the special case
n=4.

We define!! the fundamental pth-order index D ‘7 p)
for a representation p to be the trace of J, in the representa-
tion p. When p is irreducible, the eigenvalue of J, in p is
designated as J,,( p). Then we have

D'?(p)=d(p),(p) =trJ,. (2.10)
Hereafter, p designates the generic irreducible representa-
tion of L, unless otherwise stated so. We shall prove in the
next section that D 7 p) satisfies a sum rule

N
d(pa)D " (pg)+d(ps)DP(p,)= 3 D'P(p;) (2.11)

j=1

for the Clebsch-Gordan decomposition equation (1.2).
Then, L,( p) must be proportional to D @ p). The validity of
Eq. (2.11) for p = 3 and 4 has already been noted in Ref. 11.
We shall also show in Sec. 3 that the indices /,( p) and /, ( p)
defined earlier must be polynomials in those fundamental
indices D ' p)’s with g<p. This is the reason we called
D P p)s ftundamental indices. We will prove also the
D P p)’s satisfy some polynomial sum rules for the decom-
position equation (1.2) in addition to Eq. (2.11).

Finally, let us consider a branching sum rule. Let L, be
a semisimple subalgebra of L. Any irreducible representa-
tion » of L, restricted to the subalgebra L, will then be, in
general, reducible, and will be decomposed as a direct sum

wDp = @p, (2.12)
J

of irreducible components p,’s of L,. Then, for the decompo-

sition equation (2.12), we have

&, D Pw) =YD (p;) = D{Pp), (2.13)
7

where £, is a constant which depends upon L and L, but not

upon w. Therefore, once £, is computed for a specific repre-

sentation @, Eq. (2.13) can be used as a check of the branch-

ing rule (2.12) for any other irreducible representation . The
validity of (2.13) was established for p = 2 (Ref. 1), p =3
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(Ref. 6), and, for some Lie algebras, also for p = 4 (Ref. 3).
With the new definition of the indices its validity is further
extended in Sec. 6. The numerical expression of J,( p} ( p<5)
for the Lie algebra A, is given in Sec. 8 with some applica-
tions.

3. GENERAL INDICES

In this section we introduce a generalindex L, ( p) of the
representation p of degree p. The old and new indices of
previous sections turn out to be different specializations of
L,(p).

Lett, (4 = 1,2,--}bean ordered basis of the Lie algebra
L with the multiplication table (2.2). We denote the matrices
representing ¢, inp by X, . The general index is then given by

Lp(p) — ATy (Xﬂ,"'X!‘P)’ (3]}

where b """ are real coefficients, completely symmetric
with respect to permutation of the superscripts, and not all
equal to zero.

When we note Tr X,, = O for any semisimple Lie alge-
bra, we can readily see that L,(p) for p = 2 or 3 satisfy

d(pall,(ps) +d(psllypa)= X L,(p) (pP=23)(32)

J=1

for the decomposition equation (1.2). However, for p>4, the
situation is more involved. For example, we have

d(palLalps) +d(pellalpa)
+ 66#f T4 X, X,) TE® )X, X )

= ~ZIL4( Pi); (3.3)

where Tr"' and Tr'?’ imply the trace operation in the irredu-
cible representation spaces p,, and pj, respectively. As we
shall see shortly, we have

Tr(X, X,) = cg.. Lo p) (3.4)
for some constant ¢, which does not depend upon g, provided

that L,( p) is not identically zero. Therefore, Eq. (3.3) is re-
written as a mixed sum rule

d(p4)Lyps)

N
+d(pp)Lyps) + Ly pa)Llofps) = 2L4( pj)’ (3.5)
j=1
where ¢’ is a constant depending only on the values of 5>,
Relations (1.5) and (1.7) for p = 4 are clearly special

cases of (3.5). It is useful to see explicitly the choice of coeffi-
cients in (3.1) which leads to the indices /,( p) and  ( p) of
{1.4) and (1.6), respectively. For that let us first fix the Car-
tan-Weyl basis for L. Namely, we choose

t,={h,e,e_o,}, (3.6)

where 4;, j = 1,2,...,n, span the Cartan subalgebra of L.
Then, choosing
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b* T = gy, (3.7)

where
i .
14 — 7,
vi, = -Elv h;,
=

we have

L,(p)=1,(p)
of (1.6). Next, let us choose

Wilta ViV 1 SR VISRV, G HPY.
P = R (38)

where the summation is over p! permutations P over ViV,
and where 2~ has nonzero components only in Cartan subal-
gebra sector by

g =g"* (jk=12..n),

{3.9)

gia — gaﬁ =0

It is easy to observe that L, ( p) in this case is precisely L,(p)
defined by Eq. (1.4).

Since b“"*7is completely arbitrary except for its totally
symmetric property on index set u;, we call any L ( p) the
generalized index of order p. At first glance, it may appear
that we have an infinite number of pth-order indices L _( p)
for any given p. However, this is not really the case. We shall
prove shortly that the number of linearly independent pth-
order generalized indices is equal to the number of linearly
independent pth-order Casimir invariants of L. Let 4, be a
pth-order Casimir invariant such that

_ iz i,
Ap =d b, "'taup

{(a and B are nonzero roots).

(3.10)

for some completely symmetric coefficients &' 7. The con-
dition
[0, 4,] =0

can easily be seen to be equivalent to

(3.11)

P

2 oot iegps, = O (3.12)
i=1
where we lowered indices using g,,, and the symbol &; im-
plies that we delete the jth index y; and replace it by a inside
Q-

' ¢ . . . .
Now, we construct fundamental Casimir invariants

J,’s as in the previous section. They can be written as

— 1H
J, = ¢ by, e

(3.13)

In particular the orthogonality conditions, Eqgs. (2.7)—(2.9),
are now rewritten as

88,85 =0 (p=4), (3.14a)
8,18, =0 (p=5), (3.14b)
as well as
g“ Wlaﬁyguv/{agﬂy =g# Wlaﬁygpv/{gaﬂy
=g"*1g,,8:.85, =0 (p=6), (3.14¢)

for p = 4,5 and 6. The fundamental pth-order index D (9{ p)
is given by

222 J. Math. Phys., Vol. 25, No. 2, February 1884

Dm( p)= g“""”"'l‘r (Xu.Xuz "'Xu,,)’ (3.15)

which is equal to 4 ( p}J, { p) when p is irreducible.

4. INDEX OF THE TENSOR PRODUCT OF
REPRESENTATIONS

Now, we are in a position to prove the sum rule, Eq.
(2.11). We first replace X, in Eq. (3.15) by

X,—X"®Ey +E, X7, 4.1)

which is the generator of the product representationp, ® p5.
Here E, and Ej are the unit matrices in p, and p, respec-
tively. Then, the right side of Eq. (3.15) contains many terms
such as

g“'/‘““""""TI‘M )(Xu.Xuz) Tr‘B’(X,,, "'Xup) (4.2)

in addition to d { p(}D'"(py) + d{pp)D " p, ). However,
any such term as Eq. (4.2) must be zero for the following
reason. We have evidently

Tr(X, X,) = [1/d(po) 1D *( p)g,sy» (4.3)

where p, hereafter designates the adjoint representation of L.
Next, for simplicity, we set ¢ = p — 2, and replace indices
L3seespt, BY V¥, Consider now

a =

ViV

1 (B)
4 EP:TY (X, X, )
and note that Tr'®' ([X,, X, X v,J) = 0, where the summa-

tion is over ¢! permutations P of ¢ indices v,,...,v,. Then we
find thata, satisfies Eq. {3.12) with replacement of p by ¢

Vv,

and of u; by v;. Therefore, 4, =a ", 1, -, is a gth-or-
der Casimir invariant of L and must hence be expressed as a
polynomial of the fundamental Casimir invariants J,’s. In
view of the Poincaré-Birkhoff-Witt theorem this implies
that a,,.,, can be expressed as a linear combination of 8y,
8y, 8viv.8vyvyvyr Bvyv,v, 8,8y, €tC. Then Eq. (4.2) is zero by
the orthogonality conditions such as

oty p _
g# Pg/t.;tzgus---u,, =0.

This proves the validity of the sum rule (2.11).
A natural question which arises in connection with
(2.11) is to find expressions for indices L, of tensor powers p”
= p ® - ® p of one representation p or, preferably, for com-
ponents of p” with a given permutation symmetry. Such rela-
tions for /,( p) and / ,( p) were derived in Refs. 4, 6, and 14. A
separate paper is devoted to this problem."

5. INDICES AND CASIMIR INVARIANTS

It is clear from the definition (3.15) of D '#( p) that there
is a close relation between the indices and Casimir invar-
iants, and it follows from the general argument [Eqgs. (3.10)-
(3.12)] that the number of linearly independent indices of a
fixed degree coincides with the number of Casimir invar-
iants. Nevertheless, it is useful to work out the lowest nontri-
vial case, i.e., p = 4.
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By the same reasoning as above, we can write

izm&L&&)
4%

= clguvaﬂ + % CZ(g,uvgaB + gyagvﬁ +gpﬂgwx) (5‘1)

for some constants ¢, and ¢,. Multiplying both sides of Eq.
(5.1) by g#*** and g"*g°® and noting the orthogonalization
condition (3.14a), we find

clguvaﬁg,uvaﬁ =D"(p)=d(pWp) (5.2)
and

e,[d(po) + 21d (po) = DY p), (5.3a)

D p) =d(pW{ p)Jo{ p) — L2 pol}s (5.3b)

where p,, is the adjoint representation. Now g‘“"ﬁgymﬁ can-
not be zero, unless D ““( p) is identically zero for all irreduci-
ble representations p, and hence unless J, = 0 identically by
Harish-Chandra’s theorem.'? Therefore, we can express ¢,
and c, in terms of D “( p) and D “( p), respectively. Inserting
these expressions into Eq. (3.1) leads to

Lyp)=c;D(p) +c;D“(p), (5.4)

where constants ¢; and ¢ are now independent of the gen-
eric irreducible representation p. We note that D ¥ p) is the
index corresponding to the fourth-order Casimir invariant

I given by

= 18”8 + 887 + g8 Mt 1.1,

=12[12~ § 45 pol > (5.5)
which is not fundamental. At any rate, Eq. (5.4) proves that
any fourth-order general index L,( p) can be expressed in
terms of two indices corresponding to fourth-order Casimir
invariants J, and (I,)*. This reasoning is evidently applicable
to any L,( p). Also, as we will explain in Sec. 7, the sum rule
[1nvolv1ng D9 p)] for the decomposition equation (1.2) is
equivalent to a quadratic sum rule for D ?( p). Finally, the
explicit relation expressing /,( p) in terms of D,( p) and D,( p)
is given in Ref. 11.

6. INDICES AND BRANCHING RULES

Let us consider the representation (2.12) of L, which
arises as a result of reduction of a representation w of LD L,
and prove Eq. (2.13).

Suppose that the subalgebra L is spanned by the first m
elements ¢, t,,....t,, of L, where m is the dimension of L. In
order to distinguish the basis of L, from that of L, we use the
notation {¢,} (j = 1,..,m)and {¢,} (x = 1,2,...,d,) for bases
of L, and L, respectively. Now, the pth-order fundamental
index D 7 p} of L, will be written as

DY p) =

where g% 71, 4, -1, is the Casimir invariant J [ of L, If p
is a direct sum of irreducible components p;, as in Eq. (2.12),
we evidently have

SD(p)
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g(O)J'Jz---j,,r-rl.(/‘/j‘X’j2 ...,Yjp), (6. 1)

Di(p) =

On the other hand, we may rewrite Eq. (6.1) as

Déf’*(p (Olhlz p L zTerth X] (6.2)

and note that
1

;’T ;TI(XH.XM 'X )
regarded as a p-form over L can be expressed as
i ZTI(X# X# )= ch‘p)(w)g,;,mp
P! F ’ ’

+ €8y Burg, T (6.3)

by the same reasoning used already. Multiplying by g ™~
and noting the orthogonality conditions, we find

cpgu"..‘upg}l."'#p = 1 (6.4)

so that ¢, is independent of @. Now we restrict the indices
My, to subindices i, ..., Of Lo, and insert the result of
Eq. (6.3) into the right side of (6.2). We now note that 8.,
can be expressed as a linear combination of g7), ., , 7). &1, ,
etc. by similar reasoning together with the explicit form of I,
to be discussed in Sec. 8. Therefore, the second and higher
terms in the right side of Eq. (6.3) will give zero contribution
in view of the orthogonality conditions such as

1011. Tpo{0) {0)
jJ2Ohdy T =0

for L, Therefore, we find Eq. (2.13), i.e.,

£,D0'"(w) = D P (o) =D p), (6.5)
k
where &, is given by
Oz,
& =cg "’ jgjuw,,- (6.6)

Evidently £, does not depend upon w.

We emphasize that the orthogonality conditions for
g"""7s are crucial for this derivation. Therefore, the sum
rule (6.5) will not hold, in general, for L, (w). The exceptions
are, of course, the cases p = 2, 3. This is because the second-
and third-order Casimir invariants J, and J; are unique,
apart from the normalization constants, so that we have

L)) = ¢,D P(w),

(6.7)

Ly} = c,D ®(w)
for some constants ¢, and ¢, which do not depend upon w.
This fact was previously known. "%

We may remark that £, can be identically zero for some
choices of p, L, and L. We will calculate some explicit values
of £, in Sec. 8, for some special cases. As an interesting exam-
ple of Eq. (6.5), let us identify L =D,, Ly=A4,_,, and
p = 3. 8Since D, for n> 3, does not possess any third-order

Casimir invariant J;, we have D ®(w) = 0. Therefore, Eq.
(6.5) becomes

ZDQ)(PJ') =0.
J

When we choose w to be the 2" ~ ! dimensional spinor repre-
sentation of D, corresponding to highest weight A, and/or
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A, _,, this relation is rewritten more explicitly as

n—1

S DA, =0,

Jjeven
(6.8)

n—1

Z Dg)(A]) = 0)

Jjodd
where A, A,,...,A, _, are fundamental representations of
the Lie algebra 4, _, . Since D §)( p) is the triangle-anomaly
coefficient”® in gauge field theory, Eq. (6.8) assures the re-
normalizability of the theory. The special case of n = 5 cor-
responds to the famous model of Georgi and Glashow'” for
the SU(5) grand unification. We remark that Eq. (6.8) was
first observed by Georgi'® and utilized for SU(7) models of
hypercolor theory as well as of grand unification theory by
many authors.'”'8

Also, the special case of L = sl{nm) and
L, = sl(n) ® sl{m) is physically interesting.'® The sum rule
(6.5) for p = 2 and 3 and Eq. (2.11) for p = 2, 3, 4 were uti-
lized and applied for determination of possible preon models
in particle physics by Schellekens e al.?° These sum rules
together with the congruence class conservation rule®’ are
very useful for many practical purposes.

7. POLYNOMIAL INDEX SUM RULES

In Sec. 3, we have noted that any fourth-order general
index L,( p) must satisfy the sum rule (3.3). If we choose
b#*P = g*8 then it will reproduce Eq. (2.11) for p = 4.
Here, we shall choose b#**# to be

bl = | (g™ + g''g"” + g™ ) (7.1)
Then it is easy to compute

L, DY D@ D* (P) 1 M , (1.2
(1 =D p) =D ()| ) — L P }( )

where D ) p)is the same as in Eq. (5.3b). The sum rule (3.5)is
now explicitly evaluated to give

1 D (2)( pa\D (2)( Pz)
D®? —
z:a’( ;) [DFp))" = d (po)
pa) , D®(ps) T?
d{p,)d(ps , 7.3
+dlpadlp )[ d(p,) M d(pg) 73

which reproduces the quadratic sum rule of Ref. 11.

Next, let us consider a fifth-order index
Ly(p) = b+*# Tr(X, X, X, X, Xp).

If we set b#**% equal to g****#, then L( p) will reduce to
D ¥( p). Here, let us choose

10b #v4all — guvigeh 4 giaght

+ g + gelg 4 g 4 g g

+ g+ g+ g+ g, (1.4)
which is totally symmetric in five indices i, v, 4, @, and .
After some calculation, we find

1 D (Po) D(B)( ) (7'5)
4 d(po)
Then, we find a sum rule analogous to Eq. (3.5):
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D (2)( Pj \D (3)( Pj)

J d(pj)
d(ps)
— D(Zi D(3) y
200, (pa)D"(py4)
d(p4) o 3 6 +d(po)
—=D D _—
Qo) PPt

X{D P p4)D ™ ps)+ D ps)Dp,)}.  (1.6)

Since D ®) p) = 0 identically® for all Lie algebras except for
A4, (n>2), Eq. (7.6)is useful only for the Lie algebra 4, (n>2).

If we study L[ p) with suitable choices for b ****#7, we
will find more complicated polynomial sum rules. However,
there exists a simpler way of obtaining some of these sum
rules. Following the method described in Ref. 13, we know
that we have

~ SUhp) ~ Llpa) = Lips)1'd(p)

=TrX*X"X*) Tr® /X, X X,) (7.7)
for the decomposition {1.2). We can readily evaluate
D% p) 1 D% (py)
Tr(X, X, X, )= va+ — ——E g L., (18
A= Do) Bt 7 Ty St O

where A in D ¥4 } is the arbitrary but fixed representation
which is called the reference representation in Ref. 11. Here,
the normalization of g,,,,, is chosen to be

8uve =3 Trx, x, + x,x,)x, (7.9)
in the reference representation A. This will be explained
again in the next section. Inserting (7.8} in the right side of
(7.7), we find the following cubic sum rule:

D@ p. D@ y D@ B 3
2{ (p))  D7Apa) (p)]d( y

7L d(p) d(p.) d(ps)
D(S)(p w(S)(pB
D(S)(/l)
D(Z(Po) (2) (2)
22— =D 4D B)- 7.10
(o))’ (p4)D“(ps) {7.10)

For all simple Lie algebras other than 4, (n>2), we have

D ¥ p) = Oidentically.® In that case, we delete the first term

in the right-hand side of Eq. (7.10). Then, it will give a cubic

sum rule involving only the second-order index D ( p).
Similarly, we can find the following quartic identity

when we normalize D p) and D *( p) suitably as in Ref. 11:

1 [D‘z’(p,-) _ D%p.)  Dpy) ]“d(p_)
16 L d(p;) d(p,) d(ps) !
1 [ D (4)( paD M)( Pz

2+d(po) DY)
d(PA)d(PB)
3 2000 H(pA)H(pa)]
1 DP(p,) D p D (pg)
2 d(po) Do)
L

2 po)]? D, )D?(p,),
2 [dipg) D PR

where we have set'"

(7.11)
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(2), (2), 2)
dip) L d(p) 6 dp)
which is identical to D “¥( p) given by Eq. (5.3b). For the ex-

ceptional Lie algebras G,, F,, E¢, E,, and Eg as well as 4, and
A,,wehave D ¥ p) = D “( p) = Oidentically, and we omit all
terms involving D ®( p) and D *¥( p) in Eq. (7.11) for such
cases. Then it gives a quartic sum rule involving only D ?( p).
Also, for these special algebras, we have proved in Ref. 11
that /,( p) defined by Eq. (1.4) is expressed in terms of a qua-
dratic polynomial of /,( p) and that the sum rule (1.5) is essen-
tially equivalent to the quadratic one of Eq. (7.3). The special
caseof p, = pp = p, for the exceptional Lie algebras G,, F,,
Eg, E,, and Eg is interesting, since we have many polynomial
identities for D ®( p;) and we can essentially determine'’
them from these sum rules.

8. FIFTH-ORDER CASIMIR INVARIANTS

In order to find explicit forms of fundamental Casimir
invariants J,’s, we proceed as follows: Let A be an arbitrary
but fixed nonzero irreducible representation of L, which we
called'' a reference representation. Further, let x,, be the
representation matrix of z, in A and define

B = —ZTr( X, ), (8.1)

where the summation is over the p! permutations P of p in-
dices y,, fts,-.-,i4,- Then we can construct a pth-order Casi-
mir invariant I, by

Ip —h #.Mz-..ﬂpt#l t#z el (82)

Hp

It has recently been shown?? that essentially all fundamental
pth-order Casimir invariants can be constructed from I, if
we choose the reference representation A to be the basic (or
lowest-dimensional) representation of L. (Adopting the lexi-
cographic ordering convention of the simple root system of
Ref. 4, the highest weight of A is A,.) For this reason, we
choose hereafter the reference representation A to be the ba-
sic representation. Moreover, we normalize g,,, by

& =h,, =Trix,x,) (8.3)
as in Ref. 11 so that we have
D) =d(A)A) =d(po). (8.4)

The Lie algebra D, pogsesses one more nth-order fundamen-
tal Casimir invariant /,, which cannot be obtained in this
way. It can, however, be obtained®® by choosing 4 to be the
spinor representation of D, . But the canonical form of J is
well known,?*~%¢ with its eigenvalue

T.(p) =1y, (8.5)

in the notation of Ref. 25. The corresponding nth-order fun-
damental index is then defined by

D" p)=d(pW.(p) (8.6)
for this case, which will satisfy the sum rules (2.11) and
(2.13).

Now, as in Sec. 1, J, and J; can be readily identified as

=1, Jy=1I (8.7)
for this case, which will satisfy the sum rules (2.11) and
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(2.13). When 7 is an even integer, then D, possesses two
fundamental nth-order Casimir invariants J,, and J, . Other-
wise, J, is essentially unique.

Before going into detail, we may remark the following.
Let L, be a semisimple subalgebra of L. We label the basis of
Land L,as {t,} and {t;} asin Sec. 6. Then, if we restrict the
Greek indices u’s to subindices /s, the pth-order Casimir
invariant I, of L given by

I, =h #'mﬂptul oy,

will induce a pth-order Casimir invariant 7},"’ of L, by
?1’0) — hj;izv.'jﬂtjl L mtjp’ (88)

which, however, may not necessarily be fundamental. This is
the reason g""’» may be decomposed into a sum of g'oV"'j’,
etc. as in the discussion of Sec. 6 for the derivation of the
branching sum rule (6.5).

Returning to the original discussion, we chose J, and J,

to be
L,=1, J=I

as in Eq. (8.7). For any Lie algebra other than 4, (n>2), we
have of course J,( p) = 0 identically.®

For p>4, the situation is more involved. The explicit
form of J, with an appropriate normalization is given by'’

Jo=12+d(poll,

_3ﬂp_o>[1_

(i) : 12(p0)H1 -

1
6 LiA) ?Iz(Po)]Iz-

(8.9)

We may similarly construct Js. The coefficient g,,,,,5 satis-
fying the orthogonality condition (3.14b) is given by

gvaaB = [6 + d(po)]h,uviaﬂ

. d(p) 1 Ipy)
10 dA) {1 4 LiA) buvias

where b,,,, ., is defined in Eq. (7.4). Then Jj is calculated to
be

(8.10)

Js :g.uwiaﬂt’utvt,ltatﬁ =[6 +d(Po)115
_ 5 dpl [, Lipd ~
8 dii) [4 LiA) ]{412 Lipo)}fs.  (8.11)

Next, let us evaluate explicit values of J,( p). For p<4,
they are calculated in Ref. 11, so that we will consider here
the case of p = 5. Since the only simple Lie algebras with a
fifth-order Casimir invariant are A, (n>4), E,, and Ds, we see
that Ji( p) is identically zero except for these Lie algebras.
For D, itis given by Eq. (8.5) with Jy( p)_JS( p) for this case.
For E,, we note that E, has no third-order Casimir invariant.
Hence, we have

Js(p) =6+ d(po)lls( p)-
In order to evaluate I4( p), we introduce
trized Casimir invariant 7 ¢

IS = a2 1 bt 1,

(8.12)
25-27 a nonsymme-

rap = Trlx, x,x;x,%g).

Note that a,,,, 5 is not symmetric for exchanges of their
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indices. However, the evaluation of I{"*)( p} is relatively
straightforward.?

For any simple Lie algebra other than 4, (n>2)and D,,
we can show that we can express I5( p) as

[2+d(p)Ls{p)=[2+d(p)I T p)
1 _ “(po)
+ D 1015( py) ——D @) Jap)
- %m poliip) + 2L po 4144 ) = L poll Ul )
+ m [ Po)]2{ [d(Po) + 6115 po) — 181,44 )}Iz(P)

(8.13)

by using the method given in Ref. 11. For the Lie algebra E,
we may set

Jdp)=

in Eq. (8.13) since E¢ possesses no fundamental fourth-order
Casimir invariant. Englefield has computed and tabulated®
eigenvalues of 7§ 5)( p) for many low-dimensional represen-
tations of Eg, so that we can evaluate J4( p) for E, from Eqgs.
(8.12) and (8.13). We remark that both J5( p) and I5( p) change
their signs when we replace p by its contragradient represen-
tation p*. However, this nice property is not shared by
I'YSY p). Moreover, I( p) [but not 15" °( p}] is identically
zero for all simple Lie algebras other than A, (n>2), Eg, and
D;. Also, we used the normalization condition (8.4) for the
derivation of Eq. (8.13). We can rewrite Eq. (8.12) as

Js(p) = 1 [6+d(po)l{Lsp) — Is( p*)} = 4[6 + d (po)]
{1 p) — 15 p*)}. (8.12)

Another way of computing D ®/( p)is to calculate direct-

il po) =

ly
Ii(p)= v, M)

asin Eq. (1.6), which must by proportional to D ®'( p) for E, as
we see from arguments given in Sec. 3.

Finally, we have to consider the remaining case of 4,
{(n>2). Following the method of Ref. 25, we embed the Lie
algebra 4, into the Lie algebra of the U{n + 1) group whose
irreducible representation is characterized by n + 1 integers
satisfying

fizfaze2f, 2f, - (8.14)
For simplicity, we set
N=n+1, (8.15)
N+1
o=+ WXL Ly, (8.16)
k—l

as before. Then, the eigenvalues of J,, J5, and J, have been
computed'’ to be

S p) = _i(aj)z— %N(Nz— 1), (8.17a)
Jy(p)= g‘, (o;)%, (8.17b)
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Ip) = (N +5) S (o))

o=y Sy - 222 55
L 2 _ 2 _ 2 ‘
* 50 N(N2—1)N2—4)N2—-09). (8.17¢)

Similarly, we have computed J5( p) here to be

(55 )

i (8.18)

J=1

We may easily verify the fact that Eq. (8.18) ensures
Js{ p} = O identically for N = 2, 3, and 4, corresponding to
the Lie algebra 4,, 4,, and 4,, when we note an identity"?

2= (2a)(2)

for any 0, 0,, 05, and 0, satisfying =}_ , o, = 0. For possible
applications to particle physics, we simply list values of
Js(A,) and J5(kA ) here to be

Js(A) = [N + 1)(N + 2)(NV + 3)(N + 4)/24N ?]

Xk (N — k)N — 2k ){N(N+5) — 12k (N — k)}
(N — 13k>1), (8.19)
JokA,) = [(N — )N — 2)(NV — 3)(N — 4)/24N 2]

XK{N+Ek)N+2k)NN—5)+ 12k{N + &)}
(k>1). (8.20)
We remark that the eigenvalue J5(A, ) corresponding to the
completely antisymmetric representation can be obtained '
from J5(kA ) corresponding to the completely symmetric
one by the formal replacement N— — N in accordance with
a general theorem proved®” by Cvitanovi¢ and Kennedy.
We can also derive a fifth-order trace identity. Let tbe a
generic element so that
t=Erel (8.21)
for some real or complex numbers & *’s. We then denote by X
its representation matrix in the generic irreducible represen-
tation, so that
X=£4X (8.22)
Following the argument given in Ref. 11, we then find
TrX®>—A(p) Tr X?Tr X3 =¢4(1)D ¥ p), {8.23a)

D®(p)=d(pVp) (8.23b)

where c5(t ) may depend upon the form of £ but not upon p and
where A ( p) is defined by

— 5d ( po) _ L po)
41p) z[6+d<po>1d<p)(4 um)'

If p, and p, are two irreducible representations of L, then Eq.
(8.23a) implies the validity of
T2 X5 — A (p,) TI? X2 TP X*?
Tr(l)XS — A4 (pl) Tr(l)XZ Tr(l)X3

(8.24)

_ D®(p))
D%p,)’
(8.25)
Here, Tt/ (j = 1, 2) designates the trace in the representa-
tion space of p; (j =1, 2).
This relation can be used to simplify the previous
proof ® of the uniqueness of the grand unified group SU(S).
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Since J5( p) = O for Lie algebras 4, and 45, Eq. (8.23) also
implies the validity of

TrX5=A(p) Tr X2TrX? (8.26)

for any irreducible representation of these Lie algebras, re-

producing the result of Ref. 13. For N = 16 and p = A,, we
have J5(4,) = 0 so that Eq. (8.26) holds also for this case of
Ais.

Since we now know explicit values of J,( p) ( p>5), we
can evaluate values of £, which appear in Eq. (2.13). For
example, consider the case of L =4, _,; =su{VN)and
Ly,=A,_, =su(N — 1). Then choosing p to be the basic
representation A, we readily compute £, to be

& =N(N—=2)/(N— 1N+ 1), (8.27a)
£, =N2N—3)/(N— 12N +2), (8.27b)
E,=N(N—4)/(N— 1)V + 3), (8.27¢)
Eg=NYN—5)/(N— 14N +4). (8.27d)

We note the fact that £, ( p<5) always contains a factor
N — p. This is not a coincidence, since we must have
DY) p) = O identically for Lie algebras Lo =4, _,
=su(N — ljwithp = N.

Similarly, if we identify L =D, and L, =4, _ |, we
calculate

£, =2n*—1)/n2n — 1),

4(n* — 4)n> —9)

§a= >
n(4n® — 1)(2n — 3)
while we may set &, = 0 identically, for >4, and £5 = 0 for
n>6. We have checked the validity of our sum rules for many
simple special irredicible representations. For example, con-
sider the case of 4,, = su(n + 1) with product decomposition

A,eA, =A,02A,.

Then, we should have a sum rule

2d(A,)D'"(A,) = D'P(A,) + D ‘P24,
for any p. This can be explicitly verified with uses of our
values of J,( p) (p<5). Similarly for L = A4, = su(n + 1) and
L,=A,_, =su(n), the branching rule for 4, —»4, _ |,

{42} —(42] @ {A4,},

{24,}—>{24,} ® (1,] & {0}
induces the branching sum rules

&, D'P(Ay) = DP(A,) + DP(AY),

£,D'724,) = D{24,) + DiPA))
which can be again verified by our explicit formulas for £,
and J,( p).

In ending this note, we may remark the following. The
calculation of J¢( p) will be very interesting, since practically
all simple Lie algebras possess fundamental sixth-order Ca-
simir invariants. However, the direct explicit evaluation of
J,(p) for p>6 is very complicated. In a subsequent paper,'*
we will utilize a different approach for direct evaluation of

D P p) rather than J,( p) itself from character formula of
classical groups. Also, our genral Dynkin indices are useful

(8.28a)

(8.28b)
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for purposes of decomposing symmetric or antisymmetric
tensor products of the same irreducible representation into
irreducible components. These problems will be discussed in
a subsequent paper. '
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Upper and lower stationary or variational bounds are obtained for functions which satisfy
parabolic linear differential equations. (The error in the bound, that is, the difference between the
bound on the function and the function itself, is of second order in the error in the input function,
and the error is of known sign.) The method is applicable to a range of functions associated with
equalization processes, including heat conduction, mass diffusion, electric conduction, fluid
friction, the slowing down of neutrons, and certain limiting forms of the random walk problem,
under conditions which are not unduly restrictive: in heat conduction, for example, we do not
allow the thermal coefficients or the boundary conditions to depend upon the temperature, but
the thermal coefficients can be functions of space and time and the geometry is unrestricted. The
variational bounds follow from a maximum principle obeyed by the solutions of these equations.

PACS numbers: 02.30. + g

. INTRODUCTION

We will address ourselves to the question of the con-
struction of upper and lower variational bound principles for
functions which are the solutions of differential equations of
equalization processes. These include heat conduction, mass
diffusion, electric conduction, fluid friction, the slowing
down of neutrons, and certain limiting forms of the random
walk problem. Before doing so, however, it will be useful to
make a few remarks on terminology, to establish some of the
notation, and to record some of the properties of the time
translation operator U (t,¢ ') and of the Green’s function
G (r,t;r',t’), and to review briefly some previous results on
variational bounds in other areas.

A. Some terminology

We firstly consider terminology. By a stationary princi-
ple one means a principle which provides an estimate of
some quantity Q of interest for which the error in the esti-
mate is of the order of the square of the input error. (In a
Rayleigh-Ritz estimate of the energy E of a system, for ex-
ample, the error SE in the estimate of E is a weighted average
of the square of 63 = ¢, — ¥, where # is the exact normal-
ized wave function and #,, is a trial normalized wave func-
tion.) By a variational principle, one means a stationary prin-
ciple in which the trial input function contains open
parameters which are to be determined by demanding that
the estimate Q, of Q be stationary with respect to variation of
each parameter. The distinction between stationary and
variational is irrelevant for our purposes, and we will follow
common usage, in which the terms are used interchangeably.
By an upper (lower) variational bound, one means an esti-

®* Permanent address.
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mate which is not only variational but for which the sign of
Q, — @ is known to be positive (negative). The Rayleigh—
Ritz estimate of the ground state energy of a system is an
example of an upper variational bound. We will use VP for
variational principle and V Bd for variational bound.

B. Some notation and some properties of {/(#) and
G(r.6r,t)

We now give a very brief discussion of some properties
of Uand G. We are not here concerned with proofs; we wish
simply to recall and record some properties which will be
needed later. We consider a linear operator 4 (¢ ) of the form

d
A{t)=K{t) %
We could be far more general, but we will assume that K (¢ ) is
of the form appropriate to the Schroedinger equation, for
which K (t) = — iH (t)/#, with H {t) a Hamiltonian, or of a
form appropriate to an equalization process, for which

(1.1a)

(rld (2)[r') = 6(r — r')(a(r,t Vb (r,t )V — gt_ )

a
=6r —r’ (K r,t —-——)
( N K (r.1) %
=8(r — ')A (r,t), (1.1b)
where V operates in r space. We now assume that the “state
vector” F(t) is defined by
A(F(t)=0, t>7, (1.2)

and by an initial condition, its value F () at the initial time 7.
F (¢ )hascomponentsdefined by F (r,t }=/(r|F (¢ )}. F (¢t )canbe
expressed in terms of the state vector F (¢ ') at an earlier time '
by means of the relationship

Fiey=U(t,t"\F(t'), t'>7, (1.3)

a relationship which defines the time-translation operator
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U(t,t"). It follows immediately that

Ult') =1, (1.4)
where 1 is the identity operator, and that
Ut Y\U@t't")y=Ult,t"), (1.5)

where t>t'>t". Inserting Eq. (1.3) into Eq. (1.2) and noting
that F(t') is arbitrary, it follows that

A)U(,t')=0. (1.6)
Equations (1.4) and (1.6) provide an alternative definition of

U (t,t'). The determination of the “wave function” F'(r,t ) re-
quires a knowledge of F(r',t ') at all values of r’, that is,

Flrt)= fG (r,0 ¢ )F(x',¢ ). (1.7)

This relationshipdefines the Green’sfunction, G (r,;r',t '). On
setting # = ¢’ in Eq. (1.7) and noting that F (r',t '} is arbitrary,
one finds

Grt'r't')=6(r—r). (1.8)
The completeness of the set of functions |r') enables us to
rewrite Eq. (1.3} as

(r|F(t)) = f(r|U(t,t e ydr' (e’ |F(t));

comparison with Eq. (1.7) gives
(r|Utt)r) =G e ). (1.9)

C.Some previous results on variational bounds

There exists a unified formulation for the construction
of VP’s which is applicable to just about any problem in
mathematical physics.' This formulation can be used,* in
particular, to obtain a VP for the temperature distribution
T (r,t Jinaheat conduction problem and for functionals F (T').
Perhaps not surprisingly, there does not exist a unified for-
mulation for the construction of V Bd’s; the construction of a
V Bd is a much more difficult task, for it includes the con-
struction of a VP and the determination of the sign of the
error. Nevertheless, V Bd’s do exist in a number of areas.
Thus, for example, there exist variational bounds on classi-
cal quantities such as power dissipation and capacitance.*
Further, as noted earlier, the Rayleigh-Ritz principle pro-
vides an upper V Bd on the ground state energy £, of a
system; the existence of this upper V Bd originates in the fact
that the Hamiltonian A is bounded from below and that £,
is the lowest point in the spectrum. The literature also con-
tains an upper V Bd on the scattering length which charac-
terizes scattering at zero incident relative energy.>® The up-
per V Bd on the scattering length, which is as simple to use as
the Rayleigh-Ritz V Bd on E_,, again originates in the fact
that H is bounded from below. In this case zero incident
relative kinetic energy represents the lowest point in the con-
tinuous spectrum; if there exist any discrete eigenvalues (be-
low the continuum), these must be and can be accounted for.

A further comment on the methods used in the develop-
ment of a V Bd on E,,; or on the scattering length will pro-
vide an insight into the procedure to be used to derive a V Bd
on T'(r,z). Letting Q represent either E 4 or the scattering
length, it is possible to obtain a variational identity, an
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expression of the form

Qo= o, + 490,
where Q, is an explicit calculable VP for Q. AQ is a formal
expression, for it contains the unknown wave function y—
the normalized ground state wave function if one is consider-
ing E,4, or the appropriately normalized scattering wave
function. Even though A4Q is formal it is simple to prove that
A4Q is of second order in 8¢ (the error in ¥}—which proves
that Q, isindeed a VP—and that AQ>0. Thus, in the ground
state case one has AQ = (6¢|H — Ey|6¢y),and H — E,, is
non-negative in the space of square integrable functions. In
the scattering case we restrict ourselves for simplicity only to
potential scattering, and, further, to a potential which can-
not support any bound states. / is then non-negative in the
space of square integrable functions. In this case one has
AQ = (8¢|H |8v), where 8¢ is not square integrable but
rather approaches a constant at large distances; however,
one can easily prove that H is non-negative for this class of
functions too.

We turn now to the development of V Bd’s in time-
dependent scattering theory, filling in a few of the details
because much of the development of V Bd’s in the area of
equalization processes will proceed along very similar lines.
In might seem from the above discussion that one could not
obtain a V Bd on the parameters which characterize time-
dependent scattering problems, where the relevant operator
is

—i d
w0=(5 -
for even though H (¢) is bounded from below, d /d¢ is not
bounded from below (nor from above). However, time-de-
pendent scattering problems have a simplifying feature
which time-independent scattering problems do not, name-
ly, the wave functions do not contain plane waves but are
localized and can therefore be normalized. As a conse-
quence, the relevant operator is not the singular time-inde-
pendent resolvent (H — E) ™', or in coordinate space
G (E;r,r'), with E the total energy, but the nonsingular U {7, ')
or, in coordinate space, G (r,5;r',t ’). [For the time-indepen-
dent case, U (¢, ') can be writtenas U (¢ — ¢ '), and G (E;r,r') is
the Fourier transform of G (t — ¢ ;r,r') = {r|U(t — t '}|r").
Note too that G (E;r,r’) is not singular for E off the real axis.
While physical problems normally involve E on the real axis,
amplitudes there can be obtained by analytic continuation
from amplitudes off the real axis, and since G (E;r,r’) is not
then singular one can obtain V Bd’s for amplitudes off the
real energy axis.”] From the fact that the scattering wave
function satisfies

(e)gle )y = (e )|t '),
it follows immediately for all finite fand ¢, on using Eq. (1.3),
that

’

U, \U(t,t) = 1. (1.10)

That Eq. (1.10) remains valid as f~ 4+ o and t'~ — oo is
anything but obvious but is well known to be true.® On the
other hand, while the relationship

Ut WUttty =1
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is also valid for finite times, it need not be valid for infinite
times so that U need not be unitary. The isometric property,
Eq. {1.10} extended to include infinite times, will however be

sufficient for our purposes. One can write®'®

Ur)=U,t,r)+ AU (t,7), (1.11)

where the variational estimate U, is calculable but where AU
is the formal expression—it contains U—

Avmﬂ=JngfmmuwvuﬂruwmuumnﬁL
T (1.12)

where U is a trial estimate of U. (One can replace one of the
two U’s in the above expression by a second independent
trial estimate.*'%) 4 U is of first order since 4U = 0 and since
U-Uis by definition of first order, and it follows that A U is
of second order. The transition amplitude gy (1,7) for going
from an initial state ¢,{7) to a final state /(¢ ) in the presence
of the known external time-dependent potential is

aq (6,7) = (Y )| U (1,74 (7)),
where ¥,(¢ ) and (¢ ) are the (known) exact time-dependent
solutions in the absence of the external potential. Since the
amplitude of interest is normally

as=lim lim ag(t,7),

the determination of both upper and lower V Bd’s on a;
reduces to the determination of just an upper bound (one
need not obtain a V Bd) on the absolute magnitude of

Aag (6,7)=(Y{t)|AT (&:7)|4:(7))- (1.13)
We now proceed to obtain such a bound. With 6 represent-
ing i or f, we have

st ) =U(t"st "Wslt "),
and it is therefore natural to introduce the notation

Pole )=U (e ")hs(t ). (1.14)

Inserting AU defined by Eq. (1.12) into Eq. (1.13) and using
Eq. (1.14), we then have

dayfur) = | 'ds [ ' (A B U4 5)3,5)-

We now use the Schwarz inequality and the isometry of U to
obtain the sought-for bound,

|Aag (2,7)| QJ ds | ds'NAs')N,(s),

where

Nt )=(A (15 (e )\ (¢ Whs (e DM,
Note that this expression for Ny is explicit, not formal. Since
N, and N, are each of first order, the bound on 4ay is of
second order, as is required if we are to obtain a V Bd. (See
the remark due to Percival in the Note added in proof in Ref.
9.) With Ag%® the bound on |4y (t,7)| in the limit of infinite
times, and with a,,, the variational estimate of a; obtained by
taking the matrix element of U,, we have

as, — dali<a, <a;, + Aad”.

The V Bd’s are of course useless unless they lie between O and
1.
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[We note parenthetically that the V Bd on a; has not
thus far proved to be terribly useful in numerical estimates.
It gave a rather poor estimate of the probability of ionization
in a proton-hydrogen atom collision, p + Hop +p + e,
but this is a very difficult problem.'! The approach did prove
to be very useful in an analysis at asymptotically high inci-
dent velocities of the probability for the transfer of a light
particle between two heavy particles. Assuming all interac-
tions were of a certain class of short-ranged potentials, and
assuming the validity of the impact-parameter approxima-
tion, the external potential seen by the light particle is a
known time-dependent interaction and the problem reduces
to a transition amplitude analysis. It was shown' that the
second-Born contribution dominates. {The analogous result
for the important charge-transfer problem p + H—H + p,
where the interactions are not short ranged but Coulombic,
has not been obtained.}}

There are two main differences between the develop-
ment of V Bd’s in time-dependent scattering problems and in
equalization processes. The first difference is that in the lat-
ter case we are concerned with the development of a V Bd on
a function, such that 7 (r,¢ ), rather than on a matrix element
a,; . We will see that this difference is by no means unimpor-
tant, but the second and essential difference is the fact that
the functions in equalization processes are real and of imme-
diate physical interest, while the functions in time-depen-
dent scattering theory are neither real nor of direct physical
interest but rather are complex amplitudes [from which, of
course, one can calculate (real) transition rates]. Related to
this second difference is the fact that one does not have con-
servation of probability and the consequent isometry of U for
equalization processes. We can have conservation of energy
in the latter case—we do not have energy conservation for
time-dependent external potentials—but the relevant prop-
erty for our purposes is the “‘maximum principle,” the mon-
otonically nonincreasing behavior with time of the maxi-
mum value over space of T'(r,z }—for the case of heat
conduction—presumably the (partial) origin of the terminol-
ogy equalization process. This will enable us to define a norm
of U which will give the desired V Bd.

Il. EQUALIZATION PROCESSES
A. The maximum principle

In our analysis of heat conduction we restrict our atten-
tion to a solid or to a fluid at rest, within which no heat
sources are present, and we allow the thermal coefficients to
be functions of r and z but not of 7. Appendix A treats the
case for which heat sources are present. The (linear homo-
geneous) differential heat conduction equation is then given
by Eq. (1.2), with the identifications F(t) = T'(t) and

K(r,t)=A (0,6 )Ve(k (r,)V)

in Eq. (1.1a), where £ is the thermal conductivity and

A = C ~'with C the heat capacity per unit volume. The tem-
perature T'is in degrees Kelvin and is therefore positive. For
diffusion in a medium at rest and at uniform temperature one
has

A(t)ult) =0,
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where
K(rt)= V(L (r,t)V),

with & the diffusivity and u the concentration. There are
similar equations for the other equalization processes. Our
discussion will be in the context of heat conduction but can
be transcribed immediately to the other processes.

The operator A is said to be uniformly parabolic in a
domain of the four-dimensional r,z space if there exists a
positive constant i for which A (r,z )k(r,z )>u for all points in
that domain. The maximum principle states'? that if in a
domain Ak and AVk are bounded and 4 is uniformly parabol-
ic, conditions which we will assume to be satisfied, then for
any solution 7" the maximum must occur either at the initial
time or on the boundary.

A linear operator W is said to be bounded in a space if
there exists a finite number R such that

IWall<R liqll
for any function g in that space, where the norm ||g|| of gin a
domain is defined as the maximum value of |¢| in that do-

main. The norm || W || of W can be defined in the space of ¢ by
its supremum,

1w = sup 172l

lai=o ||g||
Identifying W with U, ¢ and ¢’ fixed,
NU (&2 )l N<llgle )| = gmax ), (2.1)

where ¢, (t ) is the maximum value of |g(r,t '}| over all al-
lowed values of r; rewriting (2.1) as

f (e|U (1) [y ('l q(t )
we have, using Eq. (1.9),

Max
r

<Max|(elgle D,

fdr'G (r.;r',t Ygir',t ') { <Max |q(r,2’)|. (2.2)

Note that the bound is independent of the later time ¢. The
inequality (2.1), or (2.2), is the statement of the maximum

principle and will play the role for equalization processes

which was played by the isometry of U for time-dependent
scattering. To use the maximum principle it will be necessary
to obtain a variational identity for U. This will be very simi-
lar to that given in Eq. (1.11) for time-dependent scattering.

B. The variational identity for {/

We here restrict ourselves to homogeneous boundary
conditions. (The more general case is treated in Appendix
A.) By Duhamel’s principle,'>' it follows from Egs. (1.6)
and (1.4), where A4 is defined by Eqgs. (1.1a) and (1.1b), that

i) = Ultrlftr) — j Vs (sf (s)ds

for any f(¢). Choosing f (¢ ') for t ' = ¢, 7 or s to be an estimate
U(t',r) of U(t',7), subject to

Ulr,r) =1, (2.3)
we have an integral equation for U {t,7),

Ult,r)=Tlt,r) + f 'U(t,s)A ()T (s,7)ds. (2.4)
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{In Appendix B, we provide a proof of this equation which
some physicists may find more “physical” than the usual
proofs of Duhamel’s principle.) Equation (2.4), which is an
identity for arbitrary U, was also the starting point for the
time-dependent scattering problem. If we approximate U in
the integrand by U we get a Lippmann-Schwinger-type VP
for U. Ifin Eq. (2.4) we replace 7 by s and s by 5’, we obtain an
integral equation for U (z,s). The insertion of this expression
for U (t,5) into Eq. (2.4) gives the variational identity

Ult,r)=U,(t,7) + AU (t,7), (2.5)
where
U,t,r)=Tlt,7) + fﬁ(t,s)A ()T (s,7)ds (2.6)

is an explicit VP for U (¢,7), while the (formal) second-order
error term

AU(t,7) = f lds f ' dsU(ts)A(S\US s )T, (2.7)

contains the unknown U. The elimination of U by means of
the maximum principle gives

4 U(t,r)]|<J ds f ds'||4 ()T (s',5)4 ()T (s,7)]|. (2.8)

Wenow let Uas given by Eqgs. (2.5), (2.6), and (2.7) operate on
T (7) and we introduce the zeroth-order estimate

Toit)=U,nT (7), (2.9)

the first-order correction

T\(t)= fTJ(t,slA (s)U (s,7)T (7)ds

= f U (1.5)4 (s)Ty(s)ds, (2.10)
the variational estimate
T,(t)=Tolr) + Tilz), (2.11)
and the second-order error term
AT (t)=A4U (t,7)T ()
= f ds| ds'U(t,s')4 (s')U (s’ ,5)4 (5)Tofs). (2.12a)

On interchanging the order of integration and using Eq.
(2.10), it follows that
AT (t) = j ds U(t,5)4 (s)T(s), (2.12b)

where we changed variables from s’ to s, and therefore that

AT ()| <AT™t )Ef ds|lA (ST i)]. 2.13)
In the coordinate representation, we then have
T,(rt) — AT )<T(r,2)<T,(rt) + AT®t), (2.14)

where, using Egs. (2.11),(2.9), (2.10), (2.12b), (2.13), (1.9}, and

(1.1b),
T,(r,t) = To(rt) + Ty(r,t), (2.15)

Tyrt) = f G (rar, 0T (v, 7)dr, (2.16)
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T\rt)= f t ds Jdr'@ (r,55r",8)4 (' ,5)T(r',s), (2.17)
AT (rt) = f ds | dv'G (r,t;r' ,s)4 (v ,5)T(r',5), (2.18)
AT®¢) = fl ds Max|4 (r,s)Ty(r,s)|. (2.19)

All spatial integrations are over the same volume ¥, and G is
an estimate of G.

Before proceeding to a discussion of the choice of G, we
comment on the differences between the procedure just used
and that used in time-dependent scattering. Because of the
isometry of U in the one case as opposed to the property
defined by Eq. (2.1) (which follows from the maximum prin-
ciple) in the other, the quantities to be calculated are here
much simpler; it is far simpler to bound a function than to
use the Schwarz inequality to bound an integral. In the scat-
tering problem, we had to manipulate the variational identi-
ty into a form in which U, U, and U appeared in that order,
which necessitated the introduction of adjoints, for had we
used the form which involved the order, U, U, and U, as in
the present Eq. (2.7), the subsequent use of the Schwarz ine-
quality would have led to a horrendously complicated
bound.

As in the scattering problem,’ we can also obtain a
much simpler but nonvariational bound on 7'(r,¢ ). Operating
on T {r) with U (¢,7) of Eq. (2.4}, we have, using Eq. (2.9),

T(t)=Tt) + f U (1,514 (5)Tols)ds,
so that

Tyr,t) — fT“’(s)dng(r,t )<Tyfr,t) + flT("(s)ds,
' ' (2.20)

where T "(s) is the maximum over the range of r of

A (r,5)T(r,s). A nonvariational bound was also obtained by
Protter and Weinberger.'? They too used the maximum
principle, but otherwise their approach was rather different.
See also Eidel’'man."’

1Il. THE CHOICE OF THE TRIAL GREEN’S FUNCTION

Ifthe upper and lower V Bd’sand T (r,¢ ) are to be useful,
it will be necessary to choose a moderately accurate but rea-
sonably simple form for G. An obvious possibility is the
choice G equal to an exact solution of a similar problem.
Though it will be seen that some caution must be exercised in
making such a choice, it will be useful to begin with a discus-
sion of some known exact solutions.

If the thermal properties A and & of the medium are
constant, exact solutions for steady and nonsteady heat con-
duction exist for many simple geometries, domains, and
boundary conditions.'®'” The results were obtained by clas-
sical methods; separation of variables, Laplace, Fourier and
Hankel transforms, and Green’s functions. Many problems
in fluid dynamics of viscous liquids, heat conduction, con-
vective diffusion, etc., reduce with suitable substitutions to
differential equations of heat conduction with variable coef-
ficients. For these cases, exact solutions can be found in a
limited number of special situations. Solutions have been
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obtained by means of Laplace transforms for simple bound-
ary conditions for one-dimensional problems with k£ and A
simple functions of the coordinate z, namely,

k=ko(l +bz)’, A~'=col+bz)",
and
k=kyz", A —! =c,z™,

where ko, c,, b, b, n, and m are constants.
For A (r,t) =Aqand k (r,t) = k,, we set

a = Aok, (3.1)

and introduce the Green’s function G, defined by

A, (rt )G, (r 'tV =0, t>t', (3.2)
where
A, (vt )=aV? — 9 {3.3)
at
and
G, (rt;r',t) = 8(r — r'). (3.4)

In the three-dimensional infinite case, 0<r< o, G is given
exactly for ¢ > ¢’ by

T _anq—3/2 —|r—r'|2)
G,(rtr't’) = [4ma(t —t')] exp( —4a(t — ) (3.5)
There are many cases for which it might seem simple and
natural to choose G tobe G, or G,, plus some slowly varying
function. This can lead to difficulties, however, since the
integrands of V Bd’s on 7 contain factors of the form 4G,
and AG will often behave more singularly than G does; this
can cause serious difficulties when taking norms. Consider,
forexample,thecased (r,t) = A,k (r,t ) = k. Thenoneread-
ilyfindsthatA4 (r,¢ )G, (r,z;r',t 'Yhasaterm proportionalto G, /
(t — t')and is clearly therefore more singular at f = ¢’ than is
G,.

We will discuss the possibility of bypassing this diffi-
culty in Sec. IV. For the remainder of Sec. III, we will con-
sider the interesting but limited cases for which no difficulty
arises.

From Eq. (2.17), we have

T,(r,s) = f ds'f dv'G (r,s;r',s')B (r',s'), (3.6)
where ’
B(r',s')=A (r',s')Tor',s). (3.7)

Assuming that

k (r,s) = ky = const

and
A(rs)=A(r),
one has, using Eq. (1.1b) and the first equation in Sec. II,
A(r,s) = kA (r)V? — 9
ds
kq )/1 ( , d 4 ) d
== Ve —+ == 3.8
( a e Js M Js Js (-8)
With the aid of Egs. (3.1) and (3.3), we can also write
A (r) [A(r) — 4]
A(rs)=——=4,r, 0 39
(r.s) A (r,s) + i % (3-9)
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where A, is a constant of arbitrary choice. We will use the
second form of 4 (r,s} when operating on G (r,s;r',5"}, and the
first form of 4 (r,s) when operating on the upper limit s in Eq.
(3.6) for T,. Equation (2.19) can be written as

AT“(t):stMaxfds’fdr’
Alr) A(r)—/loa)
x( 2 4 () 420 =20 O
( 2, A=

X G (r,sr',s)B {r's) l
- f ds Max fdr'@ (r,5;r',5)B (r',5)].(3.10)
Letting
G=G,,
and using Eq. (3.4) with ¢ replaced by s, and
A, (rs)G, (rsr.s) = — 8r —r')b(s — '), (3.11)

which follows from Egs. (3.2) and (3.4), one obtains

AT®Y¢)
st Max /l(r) 4o j ja’ 6Ga(r,s,r,S)B( ){

+ f ds Max|B (r,s)|. (3.12)

In the first term the limit s + o indicates that the upper limit
5 is to be approached from above and in the second term we
used

fdsfds’:fds’fds.

We now integrate by parts to obtain

J‘deaG(r,s, ) B(r's)

Jdr [G,(r5r'.s)
— G, (rs"r',s') ] B (v',s')

= fGa (r,t;x',s'\B(r'.s')dr’ — B (r,s). (3.13)
Thus, we can write
ATB(t) =f ds Max| 20
T r 0
3
+ f ds Max /{M
T r 0
X [J-Ga (r.t;r',5)B (v',s)dr' — B (r,s)} f
13
+f ds Max|B (r,s})|. (3.14)
Note that
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fl ds Max i(r)_ ( G, (rtr' s)B(r'.s)dr' — Br s))
<J‘t ds[Max % )|
+ Max '“L;/l—"l?(r,s) ] (3.15)

Equation (3.14), in conjunction with Eq. (3.15), is a useful
result when Max, |(4 (r) — 4,)/A,] is finite.

Another case for which no difficulty arises, with A (r)
now a constant, A, and k (r) varying, is

k(t)=ky+ k7", n>2, (3.16)
with k,and &, constants. One then hasfor G = G, and ¢ > t’,

AG, = (aV2 + Aok \Vo(r"V) — gt— )Ga = Aok, V-(r'VG,),

and no singularity higher than the one possessed by G, is
introduced.

IV. AVOIDANCE OF A SINGULARITY BY A
TRANSFORMATION OF COORDINATES

We now show that there are many important situations
for which the difficulty noted below Eq. (3.5) can be avoided.
We assume, as is normally the case, that A and k are time
independent—but we make the further more restrictive as-
sumption that we are concerned with an infinite one-dimen-
sional problem, that is,

Art)=A41{2), k(rt)=k(2),
or with an infinite spherically symmetric problem, that is,

Alt)=A4(r), krt)=k(n,
[The proof goes through under the slightly less restrictive
condition A (r,t) =A Z)M (¢t)and k (r,t) =k (z)M (¢), or
A(rt)=A(r)M(t)andk (r,t) = k (r)M (), thatis, weallowan
arbitrary time dependence but the time dependence must be

the same for each function.] The operator X {r,z) reduces in
the one-dimensional situation to

d
(2) -

dz

We make the change of variables from z to Z, with Z as yet
unspecified, so that

- oo<2<00,

0<r< «.

K(z)=/1(z)-5;k

9_4d2 5
dz dz 9Z’
and write
3 = dZ dz \—
AldZ)) =A(2Z), k[zZ))=k(Z) (_)
[2(Z)] (Z) [2(Z)] (Z) 2 17
(4.1)
We then have
- 2 3 T 2
K(z):ik(d—z> g +/1[k'(d—z)
dz / 8Z* dz
- dZ d (d ) ] =
P84 a (az =K(Z), (4.2
+ dz dZ \ dZ YA ) “.2)
where
]E'Eé-li.
9z
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It is useful to have the coefficient of the second partial equal
to a constant, since K (Z ) then contains the operator which
appears when A and & are constants. We therefore make the
choice

dZ _ ( A2k (z)
dz \ Aok,
where A, and k, are characteristic values of A (z) and & (z),
respectively. Z is given explicitly, ignoring a constant of inte-
gration, by

)v e Pk @], (43)

Z(z)= a”zf [A(Z)k(z)] V2 dz. (4.4)
0
With A’ = =d1 /dZ, the substitution of Eq. (4.3) into (4.2)
leads to
= & 1 (k Z') 3
K(Z)= = 1 |- 4.5
Zl=el o7z 2\ T T )az (4.3)

For our trial Green’s function G (z52',t") = G (ZZ't"), we
choose

G(ZLZ' ') = GaltZ 1)

8lZ)

where I' is a smooth function which vanishes at ' = ¢ and
which will therefore cause no difficulty; g(Z ) and 4 (Z ') are
thus far arbitrary and will be chosen to counterbalance the
higher singularities introduced on operating on G,, with K.
Ignoring the I" term, we have, with

Al2Z)t =4 (Zz1),
A(Z,1)Gogh) = (1? Z)— g; )(Gagh )

R(Z')+T, (4.6)

aG 2
=ah(Z’)[2——‘3-£+Ga Jg
az 9z 9Z?

(-4 e B+ D)
+—' -_— /= Ga_ —_— >
2\ k7 9z ez ¢

where we have used the one-dimensional form of Eq. (3.2),

2
(a——a -—i>Ga =0.
dZ* ot
The terms which involve G,, itself need not concern us; it is

the terms in G, /8Z which can cause difficulties. With
g'=0g/3Z, the coefficient of 3G, /9Z is

’ 1 ZI
20g(Z)h (2| & ——(T—T)],
ag(z )4 (2') (75
which vanishes if we choose g(Z ) to be
Z(Z) ko )1/4
Z) )= —L—=2-} . 4.7
52)=( %7 e (4.7)

The function 4 (Z ') will be chosen to have G (z,;2', ) satisfy
the initial condition

8z —2') = G2t }=6|Z)G,(Z,KZ "t }h (Z)
=glZ)o(Z—-Z")h(Z") (4.8)

since (£ |§1(t,t NE'Y =G (&8t ") foré = zand Z, and, from
Eq.(2.3), U(t,t) = 1. Restricting our attention to transforma-
tions which are single valued, we have

SlZiH—Z()] = 5( ke —z’)) = 3—;5& — 7).
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Comparison with Eq. (4.8) gives

hiz)=(a2) £ ) (4.9)

We are at liberty to introduce G (z,;2’,¢ ') in a form analogous
to that used in (4.8), with 4 (Z) chosen as in (4.9). We then
have, using Eq. (4.7),

Glz,12,t')

_ ( % )W G (ZtZ' ')

(i) (&)

To proceed further, it would seem simplest not to transform
back to the variable z but, since the most complicated func-
tion present will normally be G, which is simplest when ex-
pressed as a function of Z, to remain in Z space. Thus, in
performing an integration over z, one would change the vari-
able from z to Z.

For example, T(z,t ), defined by Eq. (2.17), is trans-
formed into

T\(Zt) =f dz'f dz’

X f dZ"gZ )G, (ZtZ't')g~ ' (Z")

(4.10)

XA(Z't"8Z"VG (2"t Z" "ig~NZ"\T(Z",7),
(4.11)
where

T(Zn=T[2Z)).

V. CONCLUSION

To gain some insight into the difficulties involved in
evaluating the integrals and determining the norms, and to
obtain some feeling for the quality of the bounds to be ob-
tained, we applied the method to the problem of a one-di-
mensional infinite solid with % a constant &, and with

A2k = [Ag+ AL (2)]ky = [a + B(2/1Ye~*""], (5.1)

where A,, , B, and / are constants. The initial temperature
distribution was chosen to be—with 7 set equal to zero—

T, (z.0)=T,e /", (5.2)

with 7, and L constants. As the trial Green’s function we
chose the one-dimensional version of Eq. (3.5), namely,

G =G, (ztz,t") = [4ma(t —t')] =2
Xexp|{ — (z — 2/ [4a(t — t')]}. (5.3)

From Egs. (2.16},(2.17), (3.14), and (3.15) in conjunction
with Eqgs. (5.1)—(5.3), we obtain

Tolz,t) = T,g(tJexp[ — (z/L)g*(t)], (5.4)

e~ UL/ + giaiz/LY
X [2(z'/LY'g(s) — (/L (s}, (5.5)

and
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AT™() = 1.66(((57/1{%)

o B _
X[1+1.5e ’(;)][g Ye)— 11Ty, (5.6a)
where we have introduced
g(t)5[1+4(a/L2)t]_”2, qz[4a(t—s)]_”2.(5.6b)

The 7 integration in Eq. (5.5) is easily performed, but the
complicated result is not shown. The subsequent s integra-
tion can be performed analytically for z = 0.

We come now to the choice of reasonable values for the
parameters which appear in Eq. (5.6a), namely, 8 /1% a/L?,
and 8 /a. The problem is uninteresting if the variation of 4 ()
is insignificant; we choose the maximum fractional variation
of A4 (2)/A,to be 1/e. It follows from Eq. (5.1) that 8 /a = 1.
The value of L is arbitrary and simply sets a scale of length. If
L /! were very small, there would be negligible variation of
A (z)k in the region over which T, is not very small, while if
L /I were very large the variation of A (z)k would be over a
very small region, and we chose [ = L. For / = L, the coeffi-
cient 1.36in (5.6a) could have been replaced by 1.14. We now
have, since f = a,

AT® )T, =1.77[g " (¢) — 1]

= 1.77[(1 + 4aL ~2t)"* —~1]. (5.7)
For 8 = 0O, the exact solution is given by Ty(z,t ), Eq. (5.4). We
want to choose a time ¢ such that Ty(z,¢ ) does not differ insig-
nificantly from the initial 7. We therefore must chooseg( ) so
that itisn’t too close to unity. If, for example, we choose 4at /
L?=1/4, wehave AT®/T, = 0.21. In other words, having
chosen a value of ¢ such that there have been significant
changesin 7' (z,t }from T (z,0), themaximumerrorin T (z,¢ }, for
any z, is of order 21%. We note that in arriving at Eq. (5.6),
we made a number of unnecessary simplifications; further-
more, we have not introduced any variational parameters in
our choice of G.

Apart from the greater power of a V Bd formulation
than of a VP formulation, one might have occasion to be
more interested in a rigorous bound than in a VP of some-
what greater accuracy but with an error of unspecified sign.
For example, one might want to be certain that in some re-
gion of space T never exceeds some local melting tempera-
ture T, . If initially T, (r,7) is everywhere lower than the
T, under consideration there is no problem. Suppose, how-
ever, that we have regions 1 and 2, with T, | < T,..,, and
that at ¢ = 7 the temperature in region 1 is below T, but
that the temperature in region 2 is below T, but above
Toel 1 - We would want to be certain that the temperature in
region 1 never rose above T, , . We thank Professor E. Ger-
juoy for this observation.

Having obtained a V Bd for the time-dependent prob-
lem, it is natural to ask if the method applies to the time-
independent problem. The answer is no. Thus, in the time-
dependent problem we are given the initial temperature
distribution, while in the time-independent problem the ini-
tial distribution remains constant and is exactly what we are
trying to determine. We can of course make a time-depen-
dent problem out of a time-independent problem by choos-
ing an initial temperature distribution from the stationary
distribution; the temperature will gradually relax to the
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time-independent case, but it will take an infinite time to do
s0, and our methods become poorer as the time interval in-
creases.

In closing, we comment on the fact that the bound we
obtained on AT (r,t) of Eq. (2.18), namely, 4 T4(¢) of Eq.
(2.19), is independent of r. This has the desirable feature that
for a given t one bound on 4 T (r,¢ ) suffices to give upper and
lower V Bd’s on T (r,¢ ) for all r, and those upper and lower V
Bd’s are not independent of r because of the presence of 7',
(r,t }—see Eq. (2.14). Nevertheless, there might be some ad-
vantages to having a bound on AT (r,# ) which was a function
of r, for if AT (r,t ) varies considerably with r, such a bound
could be much closer. We are looking into this possibility.

This research was supported in part by the ONR under
contract No. N00014-76-C-0317 and by the NSF under
grant No. PHY7910413.

APPENDIX A. VARIATIONAL BOUNDS ON THE
SOLUTION OF THE /NHOMOGENEOUS HEAT
EQUATION

Our considerations thus far have been based on the as-
sumption that no sources (or sinks) are present. We will now
show that one can bound the temperature 7 (r,¢) when that
assumption is dropped.

With C (r,t )o{r,t ) the heat generated per unit volume per
unit time, 7'(r,?) is defined by

Axt)T(rt)= — olr,t), (A1)
subject to specified initial conditions and boundary condi-
tions. It will now be convenient to introduce a temperature

7T,.(r,t ) which satisfies the homogeneous differential equa-
tion

AT, (r,t)=0 (A2)
subject to the initial condition
T, (r,7) = p(r), (A3)

where p(r) is specified, and to homogeneous boundary condi-
tions. T, (r,t ) therefore satisfies conditions the same as had
been used throughout the paper. As previously, Uis the solu-
tion operator, satisfying 47 = 0. We can now choose a func-
tion O (r,t) which is twice differentiable and which satisfies

Or,7)=T(r7), (Ada)

o )lsurfacc = T(¢)[rortee, (A4b)
It follows immediately that the function T, defined by

T,e,t)=T(r,t)— O(rt) (AS)
satisfies

T,(r,7)=0 (A6a)
and that

Th (t )lsurface — 0’ (A6b)

that is, that T}, satisfies homogeneous initial conditions and
homogeneous boundary conditions. One also immediately
finds that

AT, (rt)= —olrt) — ABC(r,t j=uw(r,? ). (A7)

Although T, satisfies an inhomogeneous differential equa-
tion, one can determine 7, because of the simple form of its
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initial conditions and boundary conditions. One has
!
T,=— J U (t,s)w(s)ds. (A8)

We can now bound T, in the usual fashion, using Eq. (2.5) to
write 7, as the sum of a variational estimate and a second-
order term which can be bounded. The bound on T= T,
+ O follows immediately.

APPENDIX B. DERIVATION OF THE VARIATIONAL
IDENTITY FOR U(t,7)

We derive in a relatively simple fashion the integral
equation for U (¢,7), given in Eq. (2.4), a special case of Duha-
mel’s principle. The proof proceeds along lines very similar
to those used in the time-dependent scattering problem. The
starting point is the relationship (to be proved)

Girr't) =G, t'rt) (Bla)
or, from Eq. (1.9),
Ultt')=Ult' ), (B1b)

where henceforth the t represents the transpose. To simplify
the notation, welet P (x) denote P (r,¢ ) for any function P. We
can then rewrite Eq. (Bla) as

G(xx')=G(x'x)".
We will also use 6 (x — x') = 8(r — r')5(t — ") and
dx = dr dt. A slight extension of the conditions under which

G was defined, namely, Egs. (3.2) and (3.4), gives as our defin-
ition

(Blc)

(K (x) — % )G(x,x') = —(x - x'), (B2a)
Gxx)=0, t'>t, (B2b)
[k {(x)V +/(x)]G (x,x')=0 on S, (B2c)

where S is the surface and / (x) is the transfer coefficient. K ¥,
defined by (@,KB ) = (K Ta,B ) for arbitrary functions a(x)and
B (x), with the integration over dx, is found to be

K '(x)a(x) = V-{k (x)V[A (x)a(x)]},

while (3/3t ) = — (3/dt). It is then natural to introduce the
transposed Green’s function G ' defined by

(K fx) + % )G*(x,x') = —8fx—x) (B3a)
Glx,x)=0, >t (B3b)
[kx)V+Ix)][Gxx)A(x)]=0 on S. {B3c)
With y=(r",s), we now introduce the expression
d
= 1 = '
1=[[6 (KW -+ o)
~ (K ')+ 2 )6 a0 Jay. (B4)

where

1+ €
fdyz J‘ ds Jdr",
t'— € Vv
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€ is a small positive number and V is the spatial volume of
integration. Using Eqs. (B2a) and (B3a), we obtain

I= — GYx'x) + G (x,x). (BS)

We can also evaluate I differently. The terms in K and K *
cancel from the way in which K and X ' were defined, and we
have

_ (9 (e /
7= f 2 [G'(v:x)G (yx)ldy

t'—€

= — 6 yG e ar <o (B6)

The last step follows from Eqgs. (B2b) and (B3b); at the upper
limit G ' is zero, and at the lower limit G is zero. We have
therefore proved Eq. (B1).

To derive the variational identity for U (¢,7) we intro-
duce the expression

J= f i 0[ U's,t )(K (s) — % )E(S»T)

+0
¥ I \irt i
— (&6 + 2 JU s |Tlsn s (BY)
s
The terms in K and X T cancel as above, and J reduces to

J= _fhoi [Uls,t)U(s,7)lds = — Ult,r) + Ult,7),
T+0 OS
(B8)

using Egs. (B1b), (1.4), and (2.3). Equating (B7) and (B8) gives
the integral equation, Eq. (2.4).
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For the evolution equations d *u/dx dt

=f(u)and du/dt =

3%u/0x? + f{u) we derive the analytic

functions f where Lie-Biacklund vector fields are admitted.

PACS numbers: 02.30. — f, 02.30.Jr

In the present paper we derive with the help of the jet
bundle technique’ a class of analytic functions f where the
evolution equations

d%u

- 1
awar .
and
Ou
o +f( ) (2)

admit Lie-Bécklund vector fields.

Consider first Eq. (1). It is well known that this equation
admits Lie-Bécklund vector fields when the function fis
givenby f(u) = " orf(u) = sin worf(u) = sinh u. The Bick-
lund problem of Eq. (1) has been studied by Shadwick.?

We prove the following: “If the function fsatisfies the
ordinary differential equation f” + (2a/3)f = 0, where a is
an arbitrary real parameter, then Eq. (1) admits Lie-Back-
lund vector fields.” The cases given above are included. For
example, if we choose @ = 3, then f(u) = sin u fulfills this
equation. On the other hand, if we choose a = — 3, then
/() = sinh u fulfills it. Before solving the equation f”

+ (2a/3)f = 0 and discussing the general solution, we give
the proof of our statement. Notice that also the wave equa-
tion d°u/dx 3t = e* + e ~ ** is integrable.

For describing Lie-Bécklund vector fields of evolution
equations the jet bundle technique is a suitable approach. We
introduce the abbreviations u, = u,, . = u, and so on.
Within this approach we consider the submanifold

F=u, —flu)=0 (3)

and all its differential consequences with respect to the space
coordinate. This means

FlEuzt —u,f’=0, (4a)
Fo=u;, —u, f" —u, f' =0, (4b)
F= u:, —u f"=3uuf" —uy f' =0, ()
Let
a
V=gluu,uyu,)— (5)
du

be a Lie-Bicklund vector field. The assumption that the
analytic function g depends also on x and ¢ does not affect the
results (this means the existence of Lie~Bicklund vector
fields) and therefore, for the sake of simplicity, they will be
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omitted. It is well known that Eq. (1) admits the Lie vector
field — xd/dx + t3/3t (scalinginvariance). Chen eral. have
shown that the one-dimensional sine-Gordon equation ad-
mits a hierarchy of time-dependent Lie-Bicklund vector
fields. Neither does the assumption that the function g de-
pends on u,,...,u, affect the result. Notice, however, that
there is in general a hierarchy of Lie-Béacklund vector fields
if at least one exists. The nonlinearity in the evolution equa-
tion (1) only appears in the function f. The function f depends
only on u. The term where the derivative appears is linear.
Consequently, we can assume that the vector field V'is linear
in #;, namely

V = (g, (upts) + u3) % . 6)

Furthermore, we can assume, without loss of generality, that
the function g, does not depend on u. If we include the de-
pendence of u, then our calculations show that g, does not
depend on u. Consequently,

V = (goluri) + 1) % - ™

The invariance requirement is expressed as
LyF£0, (8)

where L(+) denotes the Lie derivative and £ stands for the
restriction to solutions of Eq. (1). ¥ is the extended vector
field of ¥. Due to the structure of Eq. (1) we are only forced to
include the term of the form (---)d /Ju,, in the extended vector
field V. From condition (8) it follows that

g, ‘932 r agz
u +
u3162f+38u82 282f

2

a " ”
SIS+ unf) g2+3uzu,f
du, 8 du,
+uff’”+ul—g2-f’—g2f’:0, (%)
du,
where we have taken into account Egs. (4a)—{4c). Separating
out the terms with the factors u,u, and u, we obtain

d’g

+ uyu,y

usu, f' =0 (10)
“2
and
g,
u =0. 11
? ou, auzf (1

If we assume that the function g, does not depend on u,, then
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Egs. (10) and (11) are satisfied. From Eq. (9) it follows that

2
u2<3u1f" +f—a—g—;) =0 (12)
du;
and
" I a I
w2 g, f =0, (13)
du,

Since we assume that the function f'is a nonlinear analytic
function of u, it follows that the function g, must be of the
form

&lu,) =aui/3, (14)
where a is an arbitrary real parameter (@ #0). We obtain

wu(3f"+2af)=0 (15)
and

ui(f" +(2a/3)f')=0. (16)

For solving both Egs. {15} and {16) simultaneously, we have
to solve

f"+(2a/3)f=0. (17)
Consequently, the statement given above has been proved.
Let us now study the solutions to Eq. (17). We have to

distinguish between the cases @ >0 and a < 0. First leta >0
and we put @ = 3. Then we obtain

Sfluy=C,sinu+ C,cos u, (18)
where C, and C, are two real constants. Second let a < 0 and
we put g = — 3. Then we find

flu)=C,coshu + C,sinh u . (19)

To summarize, the evolution equations

9% _ ¢ sinu+ C,cosu (20)
dx dt

and
ai 2:; — C, sinh u + C, cosh 21)

admit Lie-Bicklund vector fields. The simplest one is given
by the vector field (7) together with Eq. (14). Moreover, with-
in the technique described above we also find that the evolu-
tion equations of the form d *u/dx dt = f(u), where fis a po-
lynomial in u do not admit Lie-Backlund vector fields.
Some comments are in order. We have shown that the
evolution equations (20) and (21) admit at least one Lie—
Bicklund vector field. It can be proved that they admit a
hierarchy of Lie-Backlund vector fields. They can be found
with the help of a recursion operator. A simpler approach for
finding the hierarchy of Lie Backlund vector fields is given
by Chen et al.®> where the Lie point-symmetry vector fields,
which depend on space coordinate and time coordinate,
come into play. The evolution equations (20) and (21) have
one-parameter families of Backlund transformations. No-
tice that the sine-Gordon equation has an auto-Biacklund
transformation whereas the Liouville equation has a Back-
lund transformation (the equation can be linearized). As is
well known, formal power series expansion in the Backlund
parameter lead, in such cases, to the hierarchy of Lie-Back-
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lund vector fields. Both hierarchies are equal. The question
whether the Lie-Bécklund vector fields generate Lie—Back-
lund transformation groups is not clear (compare Ref. 4 for
details of this question).

Consider now Eq. (2). Recently, several authors (com-
pare for example Ref. 5} have studied the nonlinear diffusion
equation Ju/dt = d( f(u)du/dx)/dx and Lie-Backlund vec-
tor fields. They found that only in the case where f (1) = u >
does this equation admit Lie-Backlund vector fields. Like
the Lie point vector fields the Lie~-Backlund vector fields can
also be used for finding solutions to the underlying partial
differential equation.® Moreover, a mapping to the linear
diffusion equation can be given. In the following we discuss
whether Lie-Bicklund vector fields of Eq. (2) exist. Recent-
ly, the Lie point vector fields of Eq. (2) have been given where

flu)=ku™

As described above by our first example, within the jet
bundle approach we consider the submanifold

f=u, —u,—flu)=0 (22)

and all its differential consequences with respect to the space
coordinate. This means

Fi=u, —uy—u f =0,
Fo=u,, —u,—u f"—u,f'=0, (23)
Fy=uy, —us— 3Buuf" —u,f"—uf =0,
Let
a
V = gix,tu,u,,uyu,) — (24)
du

be a Lie-Bicklund vector field, where g is an analytic func-
tion. Due to the structure of the evolution equation (2} we
can simplify our vector field ¥ without loss of generality,
namely,

V= (gl i) + ) (25)
du
Notice that, if we study the diffusion equation du/
Ot = A(u"*Fu/Ix)/dx, then for the vector field ¥ we must
make the ansatz V = (g, (u,u,,u,) + g,(1)u;)8/3u.

As described above, the invariance requirement is ex-
pressed as L3 F = 0. Due to the structure of Eq. (2) we are
only forced to include the terms of the form {---)d /du, and
(-)d /du, in the extended vector field V. From the condition
Ly F = 0it follows that

BipuBrpi s rus)
du ou,

du,
+ 3w, f" 4wy f—uy %25—2‘— — 2u,u, (9(325111,
— B aizg;z —u ?;gfl  Zhait3 aj,z f?luz
~u§%—glf'=0- (26)

Separating out the term with the factor u3 we obtain

2
298 o, 27)
Ju?
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Consequently the function g, takes the form

81lu,uy,u,) = golu,uy)u; + galuu,) . (28)
From Eq. (26) it also follows that
ity 281 29)
du du,
and
wu,—28 o, (30)
du, du,

With the help of Eq. (28) we find that the function g, does not
depend on %, and u. Consequently,

&i(u,uy,uy) = Cruy + gsu,uy) . (31)
Inserting Eq. (31) into Eq. (28) it follows that

” ” " F a ! a
Cd f" + 3w f"+u f"— g f +f 2 pu %
du du,

—u? I8 2u,u, ey 2 I8 =0. (32)
ou? Ju du, du;
From Eq. (32) we have
2
228 o (33)
ou?

and therefore the function g, takes the form

8slu,uy) = gyluu; + gslu) . (34)
Then from Eq. (32) we obtain

uu(3f" —2g;)=0, (35)

and therefore g, = 3 /' + C,. It follows that
Cai f" +u f"—gsf' +3u "+ 185
—3ul f"—uigy=0. (36)

From Eq. (36) we see that the following statement holds: The
diffusion equation (2) admits Lie-Béacklund vector fields if
and only if £ "(u) = 0. Hence Eq. (2) becomes linear. The
vector field V' takes the form

Jd
V=(us+ Cup + Cu,) —. (37)
ou
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Notice that we obtain the same result when we extend the
vector field (24) to

V =glx,t,u,u,,....u,) __8_ (38)
du

Equation (2) belongs to the following class of partial
differential equations which admit a hierarchy of Lie-Béck-
lund vector fields, namely,

ou _Fu du \? du

BTt ZE) A w39
and the functions £}, /5, and f; satisfy the system of differen-
tial equations

fif=0, fifi=f3, fT+(Nf)=0. (40)
Thus if f3(u) = 0, f,(u) = 0, and f5(u) = u, then Eq. (40) is
satisfied and we obtain the well-known Burgers equation. If
we put f,(u) = O and f,(u) = 0, then it follows that f J(x) = 0.
Consequently, f5(u) = au + b (a,beR ).

Finally, we mention that we find “nonlinear” diffusion
equations, which admit Lie-Bécklund vector fields, when
we consider systems of diffusion equations. For example, the
system of diffusion equations

_Fu . w_d

o I I
admits Lie-Bécklund vector fields.

(41)
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A singular Backlund transformation is constructed for the Ernst equation and used to construct
singular solutions to the axially symmetric Bogomolny equations.

PACS numbers: 02.30.Hq

|. INTRODUCTION

The Bogomolny equations' for the SU(2) Yang-Mills
theory, in the limit of vanishing Higgs potential, can be writ-
ten in a vector form by using the Pauli matrices as the SU(2)
basis. The equations then connect a triplet of vector fields
{A|, A,, A, to a single vector field @ according to the equa-
tions

aaAb _abAa + Aa ><‘Ab = = 6‘abc(ac(l) + Ac X‘I’),

(1.1)

where d, denotes the partial derivative with respect to the
coordinate x, and the symbol X denotes the normal vector
product in R *. The quantity €,,, is the permutation symbol
and arises from the commutation rélations of the Pauli ma-
trices.

For the axially symmetric configurations Manton? in-
troduced the ansatz for the solutions to Egs. {1.1) expressed
in axial polar coordinates,

D =(0,4, ?), A¢ = — (0, T M),
A, = —w,0,0), A = —(w,0,0), (1.2)
where w;, ¢,, and 7, are functions of the axial polar coordi-

nates p and z alone. As a result, he was able to reduce Eqs.
(1.1) to the five equations

.6, — w9, =P_l(ap7h — Wy75)s (1.2a)
3,6, + w,$, :-P_I(apﬂz + w,mny), (1.2b)
d,w, —d,w, =p~ (B2 — d2m)), (1.2¢)
ap¢l — Wy, = ‘Pil(azﬂl — w7, (1.2d)
0,0, + Wi, = —p @+ wmy) (1.2¢)

Forgacs et al.” then observed that if the Manton fields were
parametrized in terms of two new functions as

¢=f""3.4, m= _Pf_lapl//, w, = —f 13,9,

b= —f7'9S, m=pfT9,f, wo=—f"'9,¢
(1.3)
then the requirement that the Manton fields satisfy (1.2} is
confirmed if the complex quantity £ = f'+ i is a solution of
the single complex equation

(Re E)AE = (VE )%, (1.4)
where 4 is the Laplacian operator (3, + p~'d, + 32). Equa-
tion (1.4) is the Ernst equation® of general relativity. This
equation is known to be associated with an inverse scattering
problem™® and to possess soliton solutions.

In this paper we use the deformation problem formulat-
ed in Ref. 7 to derive a new type of singular Biacklund trans-
formation for the Ernst and Bogomolny equations.
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Il. A SINGULAR BACKLUND TRANSFORMATION

It has been shown in Ref. 6 that the Ernst equation can
be expressed as the integrability requirement for the system

L ¥=(4+nB)Y, (2.1a)

L,¥=(C+ 7 'D)¥, (2.1b}
where L, and L, are the differential operators

L,=(pd, + 3, —13,) (2.22)

L,=(p~'d, +77'3.), (2.20)
which satisfy the commutator algebra

(L,,L,]= —2L,. (2.3)
The matrices 4, B, C, and D are given by

r 0 b a

A:[s _r]’ Bz[o —b]’ (242)
where

r=14n;, s= —mn, b= —i¢, a=4¢, (2.4b)
and C and D are related to 4 and B by

C=—p ?4°, D=B", (2.4¢)

where 7 denotes the transpose of a matrix.
Equations (1.2) have a useful symmetry property. If ¥is
a solution of (2.1), then so also is ¥ defined by

¥ y,p,2)= W (—pn ", p,2). (2.5)

In general, ¥ and ¥ are independent solutions.

Let us now suppose that we know a matrix solution ¥,
to the system (2.1) for matrices 4, B,, C;, and D, corre-
sponded to a known solution of the Ernst equation:

LY, = (4, + 1Bo)¥ (2.6a)

L% = (Co + 7~ "Do) ¥, (2.6b)
We now seek solutions to the system (2.1) in the form

¥ (n,p, 2) = x(n, p» 2)¥o(1, p, 2). (2.7)

The requirement that this be possible for matrix functions y
having specified analytical structure in the complex 7-plane
leads to a relationship between the original matrices 4, B,,
C,, and D, and new matrices 4, B, C, and D, which are the
Bicklund transform of the original “seed” matrices 4,, B,
C,, and D,

In the work of Zakharov and Belinskii,® the assumed
analytical structure of y is that of a finite set of simple poles.
In this paper we consider the case in which one of the poles is
at infinity and a second is at zero. As a result of the symmetry
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property (2.5) we are able to impose the constraint

X=x (2.8)
This ensures that ¥, and &7/0 both give rise to independent
solutions of the transformed equation. However, we do not
utilize that fact here, and (2.8) may be viewed as a constraint
that can be consistently imposed in the search for exact solu-
tions. It is the condition (2.8) that requires us to have two

poles.
We assume y to have the form
x=gU{+Sn~" + Pn), (2.9)

where g is a scalar function of p and z and U and P are matrix
functions of p and z. The matrix U is chosen to maintain the
specific reduction of the general system (2.1) inherent in the
specific choices (2.4), which correspond to the Bogomolny
equations. In order to maintain the symmetry condition
(2.1c¢), the matrix U is chosen to be orthogonal and parame-
trized in the form

cos 6 sin &

U= —sin 8 cosB]' (2.10
The requirement (2.8) implies that

X '=gl—nSp = P PYU, (2.11)
and the trivial identity

w ‘=1 (2.12)
gives rise to the equations

S= —p’P", (2.13a)

P2=0, (2.13b)

PP"+ P P=p Y1 —g 3L (2.13¢)

The general solution to (2.13b) can be parametrized in the
form

A =22

1 A7
where a and A are functions of p and z. From (2.13¢) we
obtain

Pza[ (2.14)

g=[1—-p2®(1 + A3 ~"2 (2.15)
The final forms for y and y ' are then given by

y=gUU +p*n~'P"+ 7P), (2.16a)

¥ '=gl—qP—pn 'PU. (2.16b)

The appearance of the singular function g means that all of
the solutions that we will generate will be singular on the
surfaces.

pa(l+4%) = +1. (2.17)
Substituting (2.7) into (2.1), we obtain
(LY~ '+ x(do+mBoly "' =(4+9B),  (2.18a)

(Lo )y ™" +x(Co+n7 "Dy ™' = (C+ 1~ 'D)(2.18b)
Using the parametrized forms (2.16) for y and y ~', we ob-
tain from (2.18a), by examining the pole structure at 0 and

infinity, the equations
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7% (0,P)P—PBP=0, (2.19a)
7  —03,P—(pd,P)P+ [P, B)] — PAP =0, (2.19)
7% —(pd,P)P"—P'4,P"=0, (2.19¢)
77" pd,P"+pd,PT\P" + [P",4,] —p’P"B,P"=0,
(2.19d)

7% g —p*,.P"—p*3,P)P—(pd,P+ 2P p°P"
+ Ao+ p*[P7, By] — p?P"AoP — p*PAP"]
=4 (pd, gl ], (2.20a)
w2 pd,P+2P+p¥d,PP+p3,P)P™ + B,
+ [P, 4o] — p*P"BoP — p*PB,P"]
=B +(d.87 '],

where A4 and B are related to 4 and B by a final gauge trans-
formation

A=UAU" +(pd,U)U", (2.21a)

B=UBU —(3,U)U". (2.21b)
The matrix U must be chosen to put 4 and B into the lower
and upper triangular form, respectively. As a result of the
symmetry, (2.4c) and the orthogonality of U equations
(2.18b) provide exactly the same equations (2.19)—2.21).

The substitution of (2.14) into (2.19) yields the following
equations for A and a:

(2.20)

OA = — (26,4 + ay), (2.22a)
pd, A= —(2ry A + so), (2.22b)
8.0 = 2bya — (4rg A + (1 — A %Iso)a, (2.23a)
p0,a = 2rya + p*a®[4by A + ag(1 — A 7)]. (2.23b)

In terms of the Ernst potentials fand g the solution to (2.22)
is given by

A=fs Yco— &oh (2.24)
where ¢, is a constant. By introducing the new dependent
variable ¢ = fa ! Egs. (2.22) can be reduced to the form

d.9= —p[29, oA+ (1 —4%d,8], (2.25a)

3,9 =p[20, oA +(1 —A1%3,8], (2.25b)

which can be directly integrated as the right-hand sides are
explicitly known. If we write

N N I
A= == -
[s -;]’ 5 [é —b}’

we obtain from (2.20) the following expressions for 7, t, 5, 5, a,
¢ in terms of A and a:

F=grl1 +a*A’ + 1)]

+ aga(d* + 1)p* —a’p*A* — 1}, (2.27a)
§=gHso[1+ %A%~ 1)] —4A (A2 + 1)p%a’r,

— (4by A + 2aMlap? — 24 (A% + lja%p?}, (2.27b)
t =g’ [2Aaa, — dab, + 4aPAry A% + 1)
422747 4 1)y — 20242+ ), (2.27¢)
b=gbol1+p@* A2+ 171 —a(d? + ls, + 2a4 },

(2.28a)

a=gao[1 4+ p?@*A* — 1)] — 44 (1 + A 2p%a’b,

+ 4ad *ry + 24as, — 2al %}, {2.28b)

(2.26)
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& = g4ao[20%7(1 + A %)] + by[4a®p?A (1 +17)]
+ dar, — 2als, + 2a}. (2.28¢)
From (2.27) and (2.28) we also obtain the following identities:
— UF+ A% —5=2r,— 55 = pd, A, (2.29a)
—2b+ A% —a= —24b,—a,=03,A, (2.29b)

which we shall need in our discussion of the gauge transfor-
mation U. From (2.21) and (2.10) we obtain

r=Fcos 260 + 1 sin 26 (t + 3), (2.30a)
5 =5 cos’0 — t sin®6 — ¥ sin 260 — pd, 6, {2.30b)
0 = cos?0t — sin65 + pd, 6, (2.30¢)
b=>bcos26 + ! sin 260 (@ + ¢), (2.31a)
a = cos*0a — sin*6¢ — sin 26b — 4,6, (2.31b)
0 = cos?6¢ — sin%0a — sin 26b + 8,6. (2.31¢)

Thus we obtain two equations, (2.30c) and (2.31c), to deter-
mine 8. In terms of the variable ¥ = tan 6 these become the
equations

(2.32a)
(2.32b)

pd,Y=(2FY +5Y* —1),
3,Y=0bY+av?—3.

Fortunately, we are able to solve these equations. Compari-
son between (2.32) and (2.29) shows that ¥ =1 ~' is a solu-
tion provided A #0.

Equations (2.30a), {2.30b), (2.31a), and (2.31b) become

(jz ) +(/12/1+1)(?+5), (2.33a)
T (:11 )(J“;) ( M )7 (2.33b)
(:11 +1) (ﬁ +1)Q+C {2.34a)
(f_fz;—;)( * )“(,{2411)5' (2.34b)

Together with Eqgs. (2.27) and (2.28), these equations define a
Bicklund transformation for the Ernst equation and axially
symmetric Bogomolny equations.

Combining (2.27), (2.28), and (2.34), we obtain the Back-
lund transformation for the Bogomolny equations given by

=G (e k()

+ [ald? — Nagp? — 4hap®by]
X( 1—14 ) ( 1f ) (2352
[+ (Fr )l (55)

+ [4dar, — ald —1)s0( L ) (2.35b)

(G (Hl)l(i )

— [4hay pPa + 4a pHA 2 — 1)b,]

TN

(2.35¢)
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|G ) (Pl 25)

+ [4Aas, + dald 2 — 1)r,]

2
x( ! )— 2all+4]) (2.35d)
1—4 1—4)
where A = f; '(co — go)» 4 = @’p*(1 + A7), and
a = — fg~'. The function ¢ is completely determined by

Egs. (2.25) once a seed solution E, = f,, + ig, has been speci-
fied.

As a step towards integrating these equations to obtain
the Ernst potentials fand g, we introduce the function #
defined by

f=(1~A4)H, (2.36)

where f'is the real part of the new Bicklund transformed
Ernst potential. From (2.35) we obtain

_ A% —1 A
1pH 9, H ='°(,12+ 1)+s°(,12+ 1)
— 4byp’al + ayp*A”* — l)a, (2.37a)

Ar—1 A
o, N2+ 1 ool
+4ryda — (A2 — Las,. (2.37b)

From Egs. {2.22) and (2.23) we see that the solution to these
equations is given by

H=A1>+1)"'a *C, (2.38)
and so the new potential fis given by
f=01=4)f/a’A*+ 1), (2.39)

where without loss of generality we have set C = 1.
Equations (2.35) for the imaginary part g of the Back-
lund transformed Ernst potential now become

PE = aZ(/lj;oJr 1)2[30(1211) (,1 +1)’°](1+A)
_ -a(:—fgi—l) [agA + (A2 — )b ], (2.40a)

£ = aZ(Aj;O+ 1) [a°(j§;;)_(ﬁji1)b°]“+d)
- T.M—tﬂ)ﬁ [Aso+ (A2 = Lro] — %fo. (2.40b)

Equations (2.39)—(2.40) represent the neatest form of this
Bicklund map for the Ernst equation.

11l. SOME SPECIAL SOLUTIONS

In order to implement the construction of solutions us-
ing the Backlund map of Sec. II we need an initial *seed
solution.” The simplest solutions of the Ernst equation cor-
respond to purely real E. If we write

f=e"
we discover that the function U must satisfy Laplace’s equa-
tion

F,U+p '3, U+FU=0. 3.2)

Equations (2.25) become, with A = ue Y,

g=0, (3.1)
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d,9= —2u(pd,U), (3.3a)

3,9 = 2u(pd, U), (3.3b)
and the existence of g is guaranteed by the integrability con-
dition, which is (3.2). To obtain explicit solutions, we must
solve (3.2). There are many ways we can solve (3.2). For ex-

ample, we can separate (3.2) in normal axial coordinates by
seeking a solution of the form

U=R(p)Zz). (3.4)
The Laplace equation (3.2) can then be split into the equa-
tions

R"+p7'R'"+0?R =0, (3.5a)

Z"—oZ=0. (3.5b)
Given a solution to (3.5) with 0?#0, a solution to (3.3) is
given by

~ [207%R (p)Z"(z) + C ] [00), (3.62)

and such solutions may clearly be generalized by the linear

superposition of solutions to (3.2). When o = 0, the solution
to (3.5) is given by

R=(C,lnp+C), Z=lkz+k), (3.7)
and the solution for g is given by

4= — uc,(k2* + 2%52)

+ ukic, p® + uck, p*[Inp — 4] +c. (3.8)

A simple example is provided by

U=_, (3.9)

for which ¢; =k, =0, ¢, = k, = 1, and ¢ is given by

= (up® + c). (3.10)
The functions A and « are then given by
A=ue ? a= —élc+up?) . (3.11)

If we set # = 1 and ¢ = 0, the Bicklund transformation of
the previous section generates the solution

r= (2 p* — 4 cosh?z)( p* — 4 cosh’z)™! (3.12a)

= ( — 4 sinh zp*)( p* — 4 cosh’z) ™, (3.12b)

b =1 tanh z{ p* + 4 cosh’z)( p” — 4 cosh’z)~*, (3.12¢)

a = — p?sech z( p> — 4 cosh’z)~ !, (3.12d)
which corresponds to the Ernst potential

E = p?sechz (p* — 4 cosh’z) — ip* tanh z. (3.13)

The scalar fields of the Bogomolny equation are given by

tanh z ( p* + 4 cosh’z)
(p? —4cosh’zs)

—psecz _
b= (p? — 4 cosh’z)’ %

(3.14)

An alternative approach is to separate the Laplace equation
(3.2) in some alternative orthogonal coordinate system. For
example, we may use prolate spheroidal coordinates x and y
defined by

p=—1)"1—y})"2 z=xp
(I<x< o0, — 1gpgl). (3.15)
For an initial solution of the form
f=eY, g=0, U=U(x,y) (3.16)
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Eq. (2.25) takes the form

3.9 =2u(l —y*3,U, (3.17a)

d,g= —2ux*—1)3,U, (3.17b)
and the Laplace equation becomes

3,[(1=yp0,U] +0,[(x*—1)d, U] =0. (3.18)
If we seek solution in form

U=Xx)Y{y), (3.19)

Eq. (3.18) may be decoupled into the pair of equations

9, [(¥* — 1)9,X | + kX =0, (3.20a)

3,[(1—y%9,¥Y] — k2Y =0, (3.20D)
For & 250 a solution to (3.17) is given by

g= —2k 2ux*— 1)1 =y X'X)Y'p)+c.  (3.21)

As in the previous case, this may be generalized by using the
linear superposition principle for (3.18).
When & = 0, Egs. (3.20} have the solutions

x=8, 1n("‘ L )+k,, y=§21n( ’+y)+k2,
x+1 1—y
(3.22)
which correspond to the Weyl metrics
5, 5,
f=K(x_1> (—1+y) . (3.23)
x+1 1—y

The corresponding form of ¢ is given by

g=4ulbx—8,y)+c. (3.24)

The initial solution to the Bogomolny equation for solutions
to the Ernst equation of the form (3.16) is given in these
coordinates by

ro =3[(x* — (1 = p?)/(x* — y)1(xd. U — y3, U),
(3.25a)
by = 4[1/(x* — p)] [yx* — 1)3,. U + x(1 — y}3,U ],
(3.25b)
aO = 0’ (3250)
50=0. (3.25d)

As an example consider the solution corresponding to
8, =k, =u=1,5, =k, =0. This gives the initial solution
to the Bogomolny equations expressed by

ro=x(1=y)/(x* =%, by=p/(x* =%, ay=s5,=0.
(3.26)
From Egs. (2.27)—(2.33), we obtain
2 _ 2
r=[/1 1( 1+4 )ro— Mag®
A2r1\1-4 1—4)
_ AA ] (3.27a)
14+ 4 ) 4iar ]
b —2 |, 3.27b
( ) o + T—4 ( )

[& +1( 1+3 )ro— ‘4%‘(_—)“2% ,(3.27¢)

da(l?—1) 44 (1+A)
a= — — b
[ 1—a ° 1zfi\1-a /™
2a(1+42)]
_zat+40 32
1—4 (3.27d)
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where 4 = a’p*(1 4+ 12
For the initial solution (3.25) the functions A, a, and 4
are given by

1o (xt! _ 1 (x-1
(x—l)’ * 4y(x+1)’
& +12 (1—y)
4= .
o 1] i {3.28)

In £, we easily find that

If we write V' =

This has the general solution

=log[(1 —A p*(x*+ 1)"'(x* — 1)K ], (3.30)
where K is a constant. The corresponding function fis there-
fore given by

=K — 1) — (7 + DAL — p7)01/47 + 1)
(3.31)

The imaginary part of the Bicklund transformed Ernst po-
tential g satisfies the equations

Vo 4x ( 14+ 4 )ﬁ 2x A g ={1— 1y [x* + 6x* = 3)/(x* + 1?1}k, (3.32a)
x 2 2
x —2 1-4 = —-11-4 g, = y[(3x — X*)/(x* + 1)IK. (3.32b)
= — 1 xA + [l og x2 ; i } , (3.29a) These equations are easily solved to give
— x x
2 2y A g=K{yBx -V X+ 1)) +ix} +c (3.33)
V,= y (1—4) + —Y21-4 Therefore, the Biacklund transform of the initial solution
—A = (x — 1)/ 1 3.34
_ -4, 2 o (x— 1/lx + 1) (3.34)
1—4 y is given by
i
Fog |14 = — 2 (=) 4B ) 2R 1] ) 5.35)
4x* + 1)

If we consider special solution to the Ernst equation having
the form

E=¢"[F(p)+iG(p)], (3.36)

where § is a nonzero constant, then the Ernst equations re-
duce to

FF" —(F'P+p~'FF' = —(G') (3.37a)
FG" —2G'F' + p~'FG' = §°FG. (3.37b)

In Ref. 8 we have shown that the deformation problem (2.1)
reduces to a monodromy problem for these ordinary differ-
ential equations. Various parametrizations of Fand G lead to
Painlevé equations of types I1I and V. In this final section we
will show that the Backlund transformation of the previous
sections gives rise to a Bicklund transformation for this sys-
tem of ordinary differential equations also.
In order to maintain the special form (3.36), we set

¢, = 0in (2.24) and choose

Ao= — G Fq . (3.38)
As we require A, 7 0 this imples G, 7#0. Equations (2.25) then
provide the solution

— 8G?,

g= —pd ' [(1 =GiFy )G, —2F Gy Fy ']e™,
(3.39)
from which it follows that a, and 4, are given by
a=p '8F,[(1-G3Fy 3G, —2F G, Fy '] ™!
=p " '6F, A5, (3.40)
4,=8F; 2(G +FiAG> (3.41)
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r
If the Bécklund transformed Ernst potential is written

E=e*[F(p)+iG(p)] (3.42)
we obtain from (2.39)
F=F1 —Ajag YA +1)™! (3.43a)

and from (2.40b) we obtain the companion equation

G= ufjrl)[G"F"q(jz:) (/1 +1)]( +4)

4p5~" ,
— ;@f’z——{wo +IAT = 1F;} —2p87 %A,
(3.43b)

Equations (3.43) define a Bécklund transformation for Egs.
(3.37).
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SU(3) symmetry of the equations of unidimensional gas flow, with arbitrary

entropy distribution
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We have shown in an earlier work that, assuming a particular class of equations of state, the Euler
equations of one-dimensional gas flow are invariant under an SU(3) group of transformations, and
in fact admit of a Lie group of symmetry of infinite order; they, therefore, possess an infinite
number of conservation laws. We show in the present work that the SU(3) symmetrical formalism
still brings about tremendous simplification and analytical order in the most general case where
the equation of state is arbitrary. The six characteristic equations assume a vector form and relate
two conjugate, three-dimensional vectors U and X. The SU(3) symmetry is only broken to a minor
extent through the occurrence of a multiplicative factor I"in the equations. The conservation laws
take the form of the Cauchy integrability condition for the elements of a traceless second rank
tensor €; and, taken all together, form an SU(3) octet; in the most general case, however, there
exist four conservation laws only (five if the gas is monatomic) as a result of the breaking of
symmetry. Application of these results to the theory of self-similar flow is also discussed. Finally,
we show the invariance of the equations of monatomic gas flow under Lorentz transformations in
a three-dimensional Minkowski space; that raises the question of whether a geometrical relation

may exist between the Minkowski light cones and characteristics.

PACS numbers: 02.30.Jr, 02.20.Sv, 03.40.Gc

I. INTRODUCTION

Previous studies'? have revealed the existence of three
fundamental invariance transformations of the Euler equa-
tions of one-dimensional gas dynamics; in a later work,” it
was shown that the existence of these symmetries entails
SU(3) invariance of the equations, assuming a particular
class of entropy distribution. These are hidden symmetries,*
whose existence cannot be derived from general principles,
and can only be brought to light through careful study of the
Euler equations. Still, the determination of these symmetries
is no less important than in the case of other equations occur-
ring in mathematical physics; we show in the present paper
that the fundamental, hidden symmetry is SU(3). Prelimi-
nary results indicate that the extension to N-dimensional gas
flow may be feasible, at least in the case of spherical symme-
try.

ll. THE THREE BASIC INVARIANCE
TRANSFORMATIONS

A. The system (S) of characteristic equations

We start with the fundamental characteristic relations
IM= —pcd,t, M= +pcdyt, (2.1)

which may be viewed as defining the characteristic coordi-
nates a, 3 vs the Lagrangian coordinates M = fp dr and ¢.
Here, symbols d,,, d, indicate partial derivatives d /da, 3 /
dB, and M, t, p, c, have their usual meaning of mass, time,
density, and sound velocity; they are, anyway, thoroughly
defined through the present and the following equations.

*On leave of absence from Centre d’Etudes Nucléaires de Saclay, Service
d’Astrophysique, Gif-sur-Yvette, France.
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The relations (2.1) are thus equivalent to the system
a

2 =9, —pcdy,,
at pEom
(2.2)
dp
— =4, +pcd,,,
EW PEOy
obtained by solving for the partial derivatives d,,, dz vs d,,

I
Equations (2.2) clearly define a, [ as characteristic co-
ordinates, when p, ¢ are interpreted as the density
(p = dM /3r|,) and sound velocity. There follows two more
relations:
d,r={v—c)d,t,
(2.3)
dgr =(v+ ) dpt,
where r is the position coordinate. Taking account of equa-
tions (2.2), that new system also reads
Aur=1/p. (2.4)
We shall write the equation of motion in the form
9,P=(yP/c)d,v, dgP= —(yP/c)dgv, (2.5)
where P and ¥ are to be interpreted as the pressure and adia-
batic index. Versus coordinates M, ¢, that is

8,P+ypPdyv=0,

dr=v,

(2.6)
v + (pc*/yP)3yP=0.
The first is the continuity equation, which, as is well known,
ensures integrability of the space coordinate , defined by the
pair of equations (2.3); the second is to be interpreted as the
Euler equation of motion.
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Finally we introduce the equation of state:
PM* /p” = const , (2.7)

assuming a power-law entropy distribution of arbitrary in-
dex b. It turns out to be convenient to rewrite it in the form

p~P1/yM[l + 1/9)

where ' = y/(b — ¥).

We thus obtain a system (§') of seven equations: (2.1),
(2.3), (2.5) and (2.7), relating seven dependent variables: M, ¢,
P, v, p,c, r. The system, however, is not complete: as already
noted, the continuity equation, derived from Egs. (2.5), en-
sures compatibility of the pair of equations (2.3), which are
therefore not independent. A complete system is obtained by
adjoining to (S') the subsidiary equation

yP/pc*=1. (2.8)
The Euler equation (2.6) then assumes its usual form.

However, we need not introduce at first that additional
constraint; instead, we directly proceed to the study of the

incomplete system (S') . Any results arising from that study
will remain valid when the subsidiary equation is included.

B. Three invariance transformations of the system (S)

We introduce three transformations, defined by the fol-
lowing sets of transformation formulae for the seven depen-
dent variables M, ¢, P, v, p,c, r:

1. Transformation (T")

M'=pP t'=v, PP=M V=4
p'=W/Y)\pP/M), 2.9)
= —yYM/c, r=vt—r—yM/p.

The two indices ¥, ¥’ are exchanged by the transforma-
tion. It is readily checked that (7')? is the identity.

It will prove convenient to introduce two more nota-
tions:

vk=ut —r, Y=r+y'M/p,

in terms of which the following relations hold:

Lo =9 ¥ =v.

2. Transformation (T*)
M*= M, t*=1/t, P*=Pt,
(2.10)
r¢ = —r/t.

(V)* =v*, p*=pt, c*=ct

The two indices remain invariant: y* =y, (Y')* = 7.
Again, (T *)* = 1. Hence, (v*)* = v; also note that

Y= — Y/t

3. The space translations (X")

They are characterized by the following trivial formu-
lae:
M =M, t'=t,

P' =P, vV=v, p'=p;
11
c=¢c r=r+h, (2.11)

where A is the amount of the translation.’ Again, ¥ and ¥’
remain invariant.
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By direct substitution, it may be checked that all three
are invariance transformations of the system (S'). In fact, (T"')
and (¥, ) are invariance transformations for the complete sys-
tem as well; but (7 *) is not, unless the gas is assumed to be
monatomic [y = (N + 2}/N = 3, under the one-dimensional
assumption]. Indeed, if we assume that relation (2.8} holds, it
becomes, after transformation, yP */p*c*?> = ¢t~ which
is not unity unless ¥ = 3. [That also proves the fact that (2.8)
is an independent equation and that, accordingly, the system
obtained by adjoining it to (S) is a complete system.]

We should like to mention here that the invariance
transformations that we consider (the trivial ones, such as
(Z,), excepted) bear no relation with those described in ear-
lier literature, and whose main properties are summarized in
Appendix B.

C. The SU(3) algebra of infinitesimal transformations

Viewed as operators acting on the six-dimensional
manifold of (M, ¢, P, v, p, r), the three transformations are
completely determined by the three sets of transformation
formulae (2.9)—(2.11). Since one of them, the space transla-
tion (T?), includes an arbitrary parameter 4, a continuous Lie
group of symmetry is generated. We presently show that the
group structure is SU (3).

First, we construct a chain of six independent genera-
tors G,,...,G, starting from the generator G, of space transla-
tions. Defining G, by

T =1+hG,,
the six generators are obtained according to the scheme
T* T T* T T*

G, G, G o G GG,

which means that G, = T*G,T*, ..., Go = T*G;T*. The
chain cannot be further extended, owing to the relations
T'G,T'= —G,, (T'T¥°=1,

which may be checked directly from the given sets of trans-
formation formulae.

The transformation formulae defining these six genera-
tors read

G,: SM=8t=6P=8v=8p=0, 6r=—1,

Gy, M=6t=6P=6p=0, bv=+1, br= +1,
G, SM=6P=6v=58p=06r=0, 6t= +1,
G, SM=0, 6t= —1t? Ob6P=yPt, bv=vr*,
Sp=pt, 6r=—n,
Gyg: SM=y'Mv, St=r+y'M/p, 6P=0,
Sv= —v Sp=(y+)pv, 6r=¥vMuv/p,

G, &M=y Mv*, 6P= —yP
X(r+y'M/p), 6r=r+vyMvt/p,

where & symbolizes the variation (of a given variable) intro-
duced by the generator.

Applying the general definition of commutators, two
more generators can be constructed:

G, =[G,,G,] and G =[G,G;);

St=t(r+y'M/p),
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they are characterized by the following transformation for-
mulae:

G: SM=0, 6t= -2, 6P=yP, bv=y,

Sp=p, Or=—r
Gy SM=yM, b6t=1 6P=0, Sv= —2v,
Sp=y+1)p, 6r=—r

G, and G are readily interpreted as the generators of scale
transformations.

Now, all commutators [ G;,G;] (;,j = 1,...,8) are found
to be expressible in terms of linear combinations of the eight
generators, so that they form a Lie algebra of order 8 (Refs. 6
and 7). Explicit computation reveals that the commutation
relations follow the SU(3) pattern; they are in fact the com-
mutation relations of 3 X 3 matrices, identified with the eight
generators as follows:

0 o0
G, =

-

— o000 ~0OO0
oCccCcgooCo o~
&Q
[
—oJdo~=0cod
Coocoocoo0oo oo O
Q0o 0O —=Q

<

G, =

©C O - 0O 0 OO0 OO0 OO0

|

_

o

Q

o

Il
==
o~ o
Il o
_

lil. IRREDUCIBLE REPRESENTATIONS.
CONSTRUCTION OF TWO VECTOR SPACES OF
DIMENSION THREE: X = (P""t, Py, P'/r) AND
U= ( — Mi/y'v’ Mi/y’, Mr/r’v*)

A. Identification of the linear, irreducible
representations

The SU(3) group generated by the three fundamental
symmetries (7'), (T *) and (£, ), operates—nonlinearly—on
the six-dimensional manifold of parameters M, ¢, P, v, p, r.*
It is known, however, that irreducible representations of
SU(3) below dimension eight are either one- or three-dimen-
sional; therefore, the representation derived in the preceding
section is reducible, and, being of dimension six, it is natural
to expect that it decomposes into a product of two three-
dimensional representations. Thus we look for three nonlin-
ear functions X ( p, ), Y (py), Z( p,)of six independent varia-
blesp, (k = 1,...,6), symbolizing the six parameters M, t, P, v,
p, r; the three functions are required to constitute a linear,
three-dimensional representation of SU(3), so that they are
operated upon by each generator G, according to the matrix
law

oX X
8Y |=H,[| Y], (3.1)
¥4 VA

where the H, are eight 3 3 traceless matrices, linearly inde-
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pendent. Explicitly, we have 6X = 2, (3X /dp, )p:, etc.,
and since the transformation laws of the variables p, are
given, Eq. (3.1) constitutes a set of three linear first-order
partial differential equations (p.d.e.) for the three unknown
functions X,Y,Z.

There are eight such sets of equations—one for each
generator—so that we have a system of 24 linear equations
for three unknowns. There exist systematic methods for de-
riving the solutions of such overdetermined linear systems,
when they are compatible.® In the present case, it is possible
to arrive at a solution directly without actual calculation.
First we observe that the three variables M, v, v* do provide a
three-dimensional, though still nonlinear, representation, as
follows:

G;: M=6v=0, 6v*= + 1,
Gy SM=56v*=0, dv= +1;
Gy SM=6v=0, bv*=u
Gy SM=6v*=0, bv=r*%
Gs: M =y'Mv, Sv= —17%
Gy 6M=0, dv=uv, Obv*= —v¥%

Gg: M=y'M, Sv= —2v, Obv*= —o*

The representation becomes linear through the following
choice of the three unknown functions:

Sv* = — ¥

U= —-M""yp,
V=M"", (3.2)
W=MY"p*.

It is easily seen that each generator G, indeed operates linear-
ly on U, ¥, W according to the law

sU U
SV |=K | V],
OW w

where the K, are traceless matrices, as required.

Another, complementary, three-dimensional represen-
tation may be constructed starting from the two variables P
and ¢; in the process, a third variable

v=r+vM/p (3.3)
comes into play, and it is found that the representation in
terms of P, ¢, ¥ is irreducible. It can also be made linear,
through the following variable transformation:

X=PV7y

Y=P7y, (3.4)

Z=PV7",
so that the generators operate linearly on X, ¥, Z according
to the law

58X X
oY |=H,| 7],
6Z z

where the H, are eight other traceless 3 X 3 matrices (see Sec.
VD).

In conclusion, the original, nonlinear, six-dimensional
SU(3) representation has been reduced into a product of two
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linear, three-dimensional representations. In the process of
decomposition, two complementary three-dimensional vector
spaces have emerged.:

U=(UV,W) and X=X,Y,Z).
We may now interpret the SU(3) symmetry of the subsystem

(S')as arising from the equivalence of all choices of base vectors
in the spaces { X} or {U}.

B. The gasdynamical equations as vector equations in
the spaces (X} and {U}

In order to obtain the new form of the equations, the six
parameters M, t, P, v, p, r must now be expressed in terms of
X and U as follows:

M=V v= —U/NV, v*=W/V,
(3.5)
P=2Z", t=X/Z, y=Y/Z.
Taking account of the definitions of v*, ¥, and of the equa-

tion of state,

r=VY—W/VZ p=yZVvv ",

Thus, the fundamental relation d, M = — pc d,t becomes

V= ~-Ir"2d,X—X4d,2z), {3.6)
where the coefficient I" is related to the seventh parameter ¢
{the sound velocity) by

r=z/vx. (3.7
Then, as a result of the symmetry, the following vector equa-
tion holds:

Jd,U= —T"'XA3,X. (3.8)
The corresponding equation vs variable S is obtained by
changing the sign of I

U=+ "'XAX. (3.9)

It may be checked directly that the above six equations are
equivalent to the six characteristic equations of the system
(S).

If we start from the other characteristic equation {2.5),
d,P = (yP/c) d,v, we obtain a symmetrical (conjugate) sys-
tem of equations determining the differentials of X:

4, X=+TI'UAd,U,

(3.10)
dsX= —T'UAG,U,

where, as in Eqs. (3.8) and (3.9), the symbol A represents the
exterior product in a three-dimensional space.

As a consequence of an elementary property of the exte-
rior product, the following relations hold:

X0, U=X0,U =03, X =U-d,X=0; {3.11)
hence,
XdU=UdX=0. (3.12)

The above equation expresses the property that U is the vec-
tor normal to the integral surface in the X-space, and recipro-
cally X is the direction normal to the corresponding surface
in the U-space. As a result of Eq. (3.12), the scalar product
U-X is a constant, which we can always set equal to unity
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without loss of generality, since the choice of units is arbi-
trary:
UX=1. {3.13)

The above expression constitutes the new form of the equation
of state, which is the seventh and last equation in the system
(S').

C. Some properties of the vector equations (3.8) and
(3.10)

As stated, the set of equations (3.8), (3.9), (3.13) is equi-
valent to the system (S ), and the same is true of the conjugate
system of equations (3.10), (3.13). As these equations involve
U and X simultaneously, it is of interest to show that U, or X,
may be explicitly eliminated, yielding an equation involving
one vector (X or U) only. From the property of orthogonality
of Uand X to the integral surfaces, together with the normal-
izing constraint (3.13), there follows

U=3,XNA3d;X/(X,0,X,9;X), (3.14)
X =3,UA3d,U/(U3,U,3,U), (3.15)

where (a,b,¢) denotes the mixed product ab A ¢. In addition
we derive from Eqs. (3.8)—(3.10) the relations

3,X-3,U = 3,X-3,U = I'(U,3,U,3, )

= — I '{X,3,X,3,X); (3.16)
therefore, the two mixed products are proportional:
U—-9,U,,U)= — I *X,d,X,0;X). (3.17)

The simplest way to eliminate X is through differentiation of
Egs. (3.8) and {3.9), which yields

2ré2,U + 8, ;U + 3,3, U
=23,X N3,X = 2(X,3,X,3,X)U;

taking account of the proportionality of the mixed products,
we obtain the eliminant

2rdiU+9,rdzu+3d,ra,u+2r:
x(U,d,U,d,U)U=0.
The corresponding equation for X is

U 32X — (0,1 3,X + 35T 3, X) — 2X,3,X,3,X)X = 0;
(3.19)

(3.18)

we may rewrite it in the form
82X/ = 0X,
with
Q=3 I ">+ I *X,3,X,05X) .

(3.20)

D. The explicit expression of factor /" and the breaking
of symmetry

The above discussion is independent of any assumption
concerning the actual expression of factor 17, but, in order to
have a complete system, I has to be specified, and it must be
realized that by so doing the SU(3) symmetry will not in
general remain valid. At the same time, we should like to
stress that the breaking of symmetry takes place through
that multiplicative factor only and that the vector formalism
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developed in the preceding section always remains valid; the
equations formally retain the SU(3) symmetry in spite of the
symmetry breaking. There is no doubt that the equations of
gas dynamics present many kinds of hidden regularities,
such as the existence of the invariance transformations (7 *),
(T"), (T') discussed in Refs. 1 and 2, or the fact that the self-
similar equations can be reduced to canonical forms of unex-
pectedly simple type (see Sec. IV); the formalism here devel-
oped provides a framework in which such regularities
become predictable and are readily understood.

Now, concerning the explicit expression of I, we recall
that it is related to the sound velocity ¢ through Eq. (3.7),
where c itself is determined by the subsidiary equation (2.8};
in this way we obtain

Ti=(/Ve=—3/zv-, (3.21)

The breaking of symmetry occurs as a result of the lack of
invariance of I" under linear transformations of the coordi-
nates U, or X,.

For a monatomic gas, I is a function of ¥ only, i.e., of
the mass coordinate M; Eqgs. (3.8) and (3.9) then formally
retain the invariance under linear transformations in the X-
space; but, even then, the breaking of symmetry does occur,
since vectors U and X are not in fact independent.

Finally we point out that the explicit expression of I~
reintroduces X (resp. U)-dependent terms in the eliminant
equations (3.18) and (3.19) derived in the preceding section;
still, Eq. {3.18] is an equation for the vector U only, if the gas
is monatomic; it determines the integral surfaces in the U-
space.

E. A particular equation of state with exact SU(3)
symmetry

When the equation of state assumes the form
P=p*/M*, (3.22)

that is to say, when ¥ = ' = 3, I' is a mere constant, and the
complete system of equations has an exact SU(3) symmetry.
The equations assume the following form:

3,X=UAd,U, 3,U= —XAd,X, (3.23)

together with the corresponding equations versus variable
B. Elimination of U yields the equation

325X = (X,3,X,3,X)X . (3.24)

We have shown in an earlier work (Ref. 3) that such an
equation presents an infinite number of conservation laws,
and thus is essentially integrable, although we have not been
able yet to reduce it to linear form. The present analysis
shows that, even though the SU(3) symmetry is broken in the
general case, the equations remain in form quite similar to
the above Eq. (3.23), which should accordingly be viewed as
the archetype of the general Euler equations of gas dynam-
ics. It would be extremely interesting to have a more com-
plete mathematical understanding of the above equation
which, as stated, possesses an infinite number of conserva-
tion laws; a complete theory of it would probably provide
insight on how to deal with the general case where the en-
tropy distribution is arbitrary.
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F. The case of non-power-law entropy distributions

It is possible to extend the SU(3) description to the case
where the entropy distribution is truly arbitrary, i.e, is not
power-law; the crucial step for that purpose is to generalize
the definition (3.3) of variable ¥, which enters as a factor in
the definition of the component ¥: ¥ =P '/7 . Assuming an
entropy distribution g(M ) of completely general form,

P/p" =0o(M), (3.25)
we define 3 through the pair of characteristic equations:

¢ d ¥+ Pd,v=vd,v*—v*d,v,
(3.26)
— g+ ¥ Igv = vdgv* —v* dpv .

Introducing & =(3 — r) p, we obtain the equations defining
o

0,6+ (0/y)0, logo+d,M=0,

which integrate as

0= —DPM)/D'M), (3.27)
where
OM)= f oM M)dM . (3.28)

As a result, the generalized expressions of ¥ and Y read
Yy=r+6M)p, (3.29)
Y=P"Y7r —®(M). (3.30)

We note that Y'is now, like @ (M ), only determined up to an

arbitrary additive constant.

Keeping definitions (3.4) for X and Z, the vector
X=(X,Y,Z)is thus determined. We choose to generalize the
V component of the conjugate vector U as

V= —-1/®M), (3.31)
and keep for the remaining components the definitions

U= —pV R W=2v*V.

Equations (3.8) and (3.9) and their conjugate (3.10) relating
vectors U and X then remain valid for general entropy distri-
butions; the factor I is still expressed by Eq. (3.7), where the
sound velocity c is, as before, determined by Eq. (2.8).

V. A NEW COORDINATE SYSTEM CONSTRUCTED
FROM VECTORS U AND X, AND ITS APPLICATIONS TO
THE THEORY OF SELF-SIMILAR FLOW

A. General formalism

Let us introduce new coordinates £, 7, { defined by

E=UX, n=VY, {(=WZ, (4.1)
or, in compact form,
£E=UX, (i=123).

All integral surfaces reduce, in these coordinates, to the
plane of equation

§+n+&=1, (4.2)
representing the equation of state. We further define
H=I"'XYZ, K=I'UVW (4.3)
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and note the identity
HK =£q¢ . (4.4)

It is straightforward to show that the vector equations (3.8)
and (3.10) become respectively

(H+K)d, logU, =H3d, logl;, —(§NE);
(4.5)
(H+K)d, logX; =K 3, log&; +(ENI.E):

where (£ Ad, &), denotes the ith component of the exterior
product ¢ A d,, &; thus, surprisingly, the coordinates &, retain
some of the properties of a three-dimensional vector.

Taking account of the definition (4.1) and of the proper-
ties

H=XYZ¥ - W2ply =32
4.6
K=Uyw—bv2y szuw-33wz (4.6)

we obtain an expression for the differentials of H and K,
H+K)d,H
=HK(d,logé +d, logn+1iy—1)d,logl) (4.7)
— v —3)H?3, logn + HL2,
(H+K}d, K
=HK (3, logé + 4y —1)3, logn + 3, log &) (4.8)
—ir—3)K?4, log§ — K2,
where 2 =2, + 12,,
2o =4y —3)€ o — 1 9,&)
Y = 3)6 9.6 ~£3.8),
2, =601 —13.8)+ 035 —§3d,7)
+(6 a8 —£3.8).
Owing to the relation (4.2), £2, also reads
2,=036—1)3,7—03n—1)d.§.

Let us now introduce new coordinates u, v, w related to &, 7,
£ by a fixed translation
u=g—2/(r+7),
v=n— (V' —1)/lr+7), (4.9)
w={—(—1/lr+7),
so that, by virtue of the equation of state,
u+v+w=0. (4.10)

In terms of these, we have for the quantity £2 the very simple
expression

2=y +7y)udv—vd,u).
Combining Eqgs. (4.7) and (4.8) then yields the result
. H—K)+ My —3)H 3, logn— 4y —3)K3d, log{

=4y +¥Nudev —vd,u), (4.12)
together with a corresponding equation versus variable B,
Og(H—~K)+ iy —3)H 3z logn — v —3)K ds log{

= — 3y +¥)udgv ~vdpu). (4.13)

Remembering the identity (4.4) relating H and K and Eqgs.
(4.2) and (4.9), the above Egs. (4.12), (4.13) constitute an in-

(4.11)
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complete system for the determination of the three unknown
functions u, v, and H; in order to have a complete system, it
would be necessary to retain Egs. (4.4) or (4.5) and at least
some of the variables U, or X; as auxiliary unknowns.

But, in the special case of self-similar flow, the two
equations (4.12), (4.13) are sufficient in order to completely
determine the solution. We proceed along these lines, in the
next subsection, to the treatment of self-similar flow; it will
be seen that the above choice of variables provides a remark-
ably direct way of deriving the self-similar equations, and in
addition yields the equations in simple and compact form.

B. The equations of seif-similar flow

Owing to the fact that all quantities H, K, &, 7, { or u, v,
w involved in the system (4.12), (4.13) are dimensionless, the
self-similar equations are obtained by merely replacing the
partial differential symbols d,, d; by the total differential
symbol d '%; we thus obtain the two equations

udv—vdu=20, (4.14)
2d(H—-K)+(y — 3)Hd log y

—(y—3)Kdlog{=0. (4.15)
The first one is immediately integrable as

v=mu, w= —(m+ lu, (4.16)

where m is a constant; hence the following result:
Self-similar flows are represented by straight lines in the
plane of equation & + n + § = 1. When the equation of state
is given (that is to say, when the indices ¥ and ¥’ are fixed), the
straight lines envelop a point, of coordinates
Eo=2/r+v), mo=—Wlr+v),
Co=lr—1/ly+7).
As aresult of Egs. (4.9) and (4.16), the variables £ and {
are linear functions of 7, so that the product HK =£7¢ is a
cubic polynomial g of variable 7:

HK =g(7n). 4.17)
Therefore, Eq. (4.15) is an ordinary differential equation for

the function H (7); in the case where the gas is monatomic
{y = 3), the form of the equation becomes simpler:

d [H_ g(n)]z_(f_"ﬁ (r=3.

4 s (4.18)
dn 27

H

Introducing a new variable 6,
6=H K,

in terms of which
H=(0+/67+4g)/2,
K=(—-6+J67+4g)/2,

the monatomic self-similar equation also reads
dino _ —(r =3 [1+ 1+ig—(”l] .
diny 4 o?

In the particular case where the second index ¢’ is also equal
to 3, the equation reduces to the form dO /dn = 0; for such
an equation of state, the problem of self-similar flow is readi-
ly integrable, and the general solution reads

(r=7r=3).

(4.19)

(4.20)

(4.21)

O = const (4.22)
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Going back to the original notations in terms of vectors U
and X, that reads

XYZ - UVW =const (y=y=13),

a simple and symmetrical form.

The above equation of state was the subject of one of our
earlier investigations (Ref. 3), in which we showed that it is
characterized by the existence of an infinite number of con-
servation laws; we now see that the corresponding self-simi-
lar equations are integrable in closed form, and assume a
very remarkable symmetrical form.

(4.23)

V. THE SU(3) PATTERN OF THE SET OF
CONSERVATION LAWS

We first consider the case, presented in Sec. IIIE, where
the SU(3) symmetry remains exact, which occurs when the
equation of state assumes the form (3.22). There are then
eight conservation laws forming a complete SU(3) octet that
can be derived from the momentum conservation law. The
manifestly SU(3)-symmetrical formalism developed in Sec.
ITIB makes it possible to formulate these eight conservation
laws in a simple and unified way; at the same time a geomet-
rical interpretation emerges, in which the conserved quanti-
ties are viewed as “potentials,”” whose equipotentials are de-
termined by the condition of orthogonality to given families
of curves.

We then show (Sec. VC) that the formalism is suscept-
ible to a straightforward generalization to the case of arbi-
trary polytropes with arbitrary entropy distributions. The
number of conservation laws decreases from eight to five for
a monatomic gas (four for other polytropes) as a result of the
symmetry breaking, but the unified formalism and the geo-
metrical interpretation remain.

A. The case with exact SU(3) symmetry

The physical meaning of the eight conservation laws
has already been discussed in an earlier work (Ref. 3); let us
recall that the six first, denoted I, I1*, E, E *, 0, 0,, are
related, respectively, to momentum, center-of-mass motion,
energy, the virial theorem, and the two independent scale
transformations leaving the equation of state invariant,
whereas the remaining two, here denoted 7,, 7,, have no
straightforward interpretation. Their precise definition may
be found in the same paper, but we rewrite it here for conve-
nience, in characteristic form

aan=(U+C/3)aaM»

a,nM*=rd ,M—1t3d,1I,

3. E =3V’ + 3vc + §c?) 9, M,

0 E*= —1P3,M+rtd,11 —t%4,E,

d,00=rd, 1 —2t3,E,

0,0, =13, E+ M — 2vc — %) 3,1,

0,70 =2rd,E —3M(* + v + cv* — )3, ¢,
8,7y =t8,7g—6rd, o, +6rtd E—23,1.

In the SU(3)-symmetrical notations of Sec. ITIB, the de-
finition of the momentum IT becomes
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3, M =(Z—3UV)a,V, (5.2)

together with a similar equation versus variable 8. A more
interesting form, which leads to a unified formalism, is as
follows:

3, +UV)=Z3,V—-V3,Z,

(5.3)
M+ UV = —Zd,V+VisZ.
The above expression is of the general form
d.€;, =X,0,U, — U, d,X,,
(5.4)

dge; = — X, 05U, + U, 65X,
where X, {{ = 1,2,3) and U, (j = 1,2,3) stand for X,Y,Z and
U,V, W, respectively. Equation (5.3) indicates that the inte-
grability condition of e;,, defined by the pair of equations
(5.4), is satisfied, since
€, =M+ UV?,
Owing to the SU(3) symmetry, integrability of ¢,, entails
integrability of each of the €;. As we presently show, only
eight of the nine €, are independent quantities, and these
account for the existence of the eight conservation laws.
From the definition (5.4) one immediately deduces
d,(Tre;)=X-d,U—-U39,X=0,
asaresult of Egs. (3.11), and similarly ds(Tr €;) = 0; thus the
trace is a constant, which we may take to be zero:
Tre; =0. (5.5)

That is the announced relation constraining the three diag-
onal elements.

Detailed calculation leads to the following identifica-
tions:

N=¢, - UV?,
M*= —¢,— WV?,
E= —e, +(12V)\UV2—2Z?),

E*= —e,+(12V)X?* - V2W?, (5.6)
Oy =(€,, — €]+ XZ/V+ UVW,
o= —€,+XR2VZ)\U*V?*-27,

To= —26, +(UYZ)VY - 1)— (Z/VHVY +1).
In conclusion, the complicated set of conservation laws (5.1)
has been shown to be equivalent to the matrix equation (5.4),
which thus provides a unified formulation of the octet of con-
servation laws. It is sufficient, from a theoretical viewpoint,
to deal with the €;; only, and forget about the more tradition-
al ILII*, E, etc.

B. A geometrical interpretation
The matrix equation (5.4} may be rewritten in the form

du€; =X70,(U/X)),
(5.7)
dpe; = —X23,(U/X,),

which is of the general type
doA= +R3,B, A= —RJIB. (5.8)

The above equation constitutes the orthogonality condition
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of the systems of curves 4 = const and B = const, in a space
with metric

ds* =dM? —p°c*dt?, (5.9)
or with any other conformal metric. Obviously the metric is
hyperbolic, with the null directions pointing along the char-

acteristic curves. In terms of the M, ¢ coordinates, Eq. (5.8)
reads

A= —mcRdy B, d,B= —(pc/R)d, 4, (5.10)
and, therefore, eliminating R, we obtain
3,49,B —p*c*3,yA3,B =0,

the announced orthogonality relation.

That notion of orthogonality turns out to be important
owing to the actual form of the characteristic equations;
thus, the fundamental characteristic equation (2.1) expresses
orthogonality of particle trajectories (M = const) to space-
like sections (¢ = const), while the characteristic equation
(2.5) expresses orthogonality of isobars (P = const) to isove-
locity curves (v = const). More systematically, the SU(3)-
symmetrical formulation (3.8}, (3.9} indicates that the sys-
tems of curves U, = const and X,/X; = const are mutually
orthogonal (i, j,k being a substitution of 1,2,3) and, similarly,
Eqgs. (3.10) show that the curves X, = const are orthogonal
to the curves U,/U, = const.

Thus we arrive at the geometrical interpretation of the
eight independent conserved quantities € ;, as potentials whose
equipotentials are orthogonal to the curves of equation

U;/X; = const . (5.12)

The latter may be viewed as ““field lines,” which serve to
define the associated potentials €., up to a gauge transforma-
tion of the general form

€; =fle;).
In order to have a complete determination of ¢, account
must be taken of the particular factor (X ?) occurring in the
orthogonality relation (5.7).

(5.11)

ifs

C. The generalization to equations of state of arbitrary
form

We will in fact consider for simplicity a power-law en-
tropy distribution, but, again, that restriction is not essential
as seen in Sec. III F.

The appropriate generalization of Eqgs. (5.4), defining
the conserved quantities €, turns out to be

a(zeij = +A (7’Xi aa Uj - ij aaXi) ’

(5.13)

dge; = —A(Y'X, 95U, —vU; 9pX)),

where the factor 4 is defined as A =(I"/y')Z 7 =¥
=(I" ~'/y)V'" ~?. It must at once be pointed out that not all
of the €;; are integrable, i.e., the Cauchy integrability condi-
tion ensuring compatibility of the pair of equations (5.13) is
not automatically fulfilled. Thus the SU (3) octet of conserva-
tion laws is in general incomplete, a consequence of the sym-
metry breaking effect discussed in Sec. ITID. At the same
time, it should be stressed that the above SU (3) symmetrical
Sformulation (5.13) is, nevertheless, completely general, in the
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sense that it represents the set of all surviving conservation
laws which are actually known. We show below that there
are four conservation laws in the most general case, five if the
gas is monatomic (¥ = 3); and we discuss the particular con-
ditions under which the remaining four (resp. three) con-
served €; may exist.

From a geometrical standpoint, it is interesting to note
that equations (5.13) still can be written in the form of an
orthogonality relation

3.6, = +AX,U, 3, logUT/X ),
(5.14)
dp€; = — AX,U, 9, log (UT/X7)

so that the equipotentials €, = const are the curves orthogo-
nal to the field lines of equation

U7/X 7 = const. (5.15)

We now proceed to establish the form of the Cauchy
integrability conditions. Taking account of the general re-
sults derived in Sec. ITIC, we obtain, after some algebra,

3500, €,) — 0al0p€,) =T "4 (X,3,X,3,X)

-2
X{?’(?’— ) 3 T x o8

J

5. U.
— '3 J__L(Si)}’
vy )(3 g, %

(5.16)

where §,;is the Kronecker symbol; therefore, the condition
of integrability of ¢, reads

S, X; 5. U.
=312 — L8, =y =L — L6,).
Yy )(3 Xﬁ,;) 1y )(3 7 ,2>
(5.17)

j i
That condition is automatically satisfied at least when the
three Kronecker symbols become zero, which occurs in
three cases: (i, j) = (1,2), (3,1), or (3,2). Thus the three conser-
vation laws of €,,, €5, and €5, always exist, independently of
the form of the equation of state; these are associated with
the center-of-mass integral I1*, energy E, and momentum II,
respectively, the correspondence being as follows:

€, =IH—Mv,
€, = — II* — Mv*, (5.18)
€= —E+MW —yc/vly—1).

That generalizes the result [Eq. (5.6)] of Sec. VA.

Next, it is easily seen from Eq. (5.17) that €, exists if
¥ =3, i.e, if the gas is monatomic, whereas €,, exists when
the index y' = 3, that is to say, b = 4y/3, according to Eq.
(2.7). The remaining nondiagonal element, €,5, can exist only
when both ¢ and ¥’ equal 3, which is the equation of state
discussed in Secs. IIIE and VA, possessing exact SU(3) sym-
metry. These three potentials express the laws of conserva-
tion of E *, 7,, and 7, respectively.

Turning now to the consideration of the diagonal ele-
ments, we similarly find that €, exists when 3’ = 7, €,, when
y' = 2y/{y — 1), and €;; when ¢’ = y/(y — 2). But these are
only particular cases of a generally valid conservation law,
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expressing scale invariance. Let us introduce two linear com-
binations 4 and o

/i=Tr6UE€11 +622+€33, (5.19)
o=€./Y" + /Yy +e3/y (/Y +1/v+1/Y =1),
(5.20)

which are formally defined through the corresponding linear
combinations of Egs. (5.13), independently of any considera-
tion of integrability of the €. In the same way asin Sec. VA it
may then be seen that Tr € is indeed integrable, and in fact is
an absolute constant, which again we take to be zero. The
quantity o is found to be always integrable as well, and con-
stitutes our fourth generally valid conservation law. We ob-
serve that, in view of the way the two indices 7, ¥’ and the
new index ¢” occur in Eq. (5.20), it would seem appropriate
to rewrite ,, ¥,, and ¢, in place of ¥”, %, and ', from now on;
then Eq. (5.20) would take the form

3 €.
o=y = (5.21)
=Y
Since Tr €; = 0, equivalent expressions of the same

conservation law are found in the general form

dgd=o0+uTre

i
where u is an arbitrary constant.

From Eq. (5.20) we easily recover the earlier particular.

results concerning the cases of integrability of €, ;, of €,,, and
of €;;.

In conclusion, we have four generally valid conserva-
tion laws (five for a monatomic gas), and three others which
may or may not exist, depending on the particular form of
the equation of state. All together, they form an SU (3) octet,
and they all are expressed by the same universal formula [Eq.
(5.13)] in matrix form, through which the formal symmetry of
the octet is made manifest. Thus the conservation laws of],
e.g., energy and momentum constitute two aspects of a
unique law of conservation of a quantity of more complex
mathematical nature, a result which reminds us of the uni-
fied nature of energy and momentum in relativity.

D. The transformation formula for the conservation
laws

We again consider the general case of arbitrary entropy
distribution.

We have seen in Sec. ITIA that an SU(3) generator trans-
forms the vectors U and X according to the formulae

5X=HX, SU=KU, (5.22)

where X, 8X, U, U denote three-dimensional column vec-
tors, following standard matrix notation. The choice of a
3x 3 traceless matrix A determines the infinitesimal trans-
formation and, consequently, also determines the matrix X
operating on the conjugate space {U}. From the complete
set of transformation formulae listed in Sec. IIC, it can be
seen that the two matrices are in fact related by

K= —H, (5.23)

where symbol ~ denotes a transposition. For finite linear
transformations, Egs. (5.22) become

X'=4X, U=4U, (5.24)
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where .# and 4" are arbitrary 3 X 3 matrices of unit deter-
minant; and Eq. (5.23) implies between them the relation

N =", (5.25)

Such a relation might have been expected without any calcu-
lation, in view of the fact that Eq. (3.13) reads, in matrix
notation,

Ux=1, (5.26)

which has to be satisfied by the transformed U’, X' as well;
and the simplest, probably unique way to ensure that result is
obviously through Eq. (5.25).

Then, as a result of the SU(3) symmetry established in
Secs. IT and 111, the transformed vectors U’ and X’ obey
characteristic equations of unchanged form:

U= -TI"'XN3X,

(5.27)

U = + T 'X'NpX’,

J,X'= +T'U AU,

(5.28)

9pX'= —T'U AU .

It must be noted that the above equations involve the origi-
nal factor I rather than I ', which in general differs from I';
in this respect the transformed Eqgs. (5.27) and (5.28) really
differ from the original ones (3.8)—(3.10), as expected as a
result of the symmetry breaking. But the following geometri-
cal result (see Sec. VB) still holds:

The equations X [ /X | = const, and U, = const define
mutually orthogonal systems of curves; and the equations
U;/U; = const, X |, = const constitute orthogonal systems as
well; here (i, j,k ) stands for an arbitrary permutation of
(1,2,3), and a prime denotes the operation of an arbitrary
unimodular linear transformation. These two orthogonal
systems of curves thus depend on eight continuous param-
eters. That result holds in the most general case, with arbi-
trary entropy distribution.

We next consider the effect of linear transformations on
the conserved quantities €. Let us define the transformed €;,
by the formulae

d.€;= +A4WX;d,U; —yU;d,X]),
(5.29)

Oge; = —A (VX[ dpgU; —yvU] dpX]),
where, in a similar manner as in Egs. (5.27) and (5.28), the
factor 4 is retained instead of its transformed 4 '. We certain-
ly are free to choose the definitions of the € and ¢’ as we
please, in the most convenient way; it is only necessary to
recognize that the definitions (5.13) of the €, and (5.29) of the
€;; are not completely equivalent, owing to the symmetry
breaking. The €;; (provided their integrability condition is
satisfied; see the discussion below) still have the character of
conserved quantities just as well as the €, do; but the two sets
are, of course, not independent.

Starting from the definition (5.29) and Egs. (5.22), one
easily derives the explicit transformation formula for infinite-
simal transformations:

e = [He], (5.30)

where € is the matrix whose matrix elements are the €;, and
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the bracket denotes a commutator. It is interesting to note
that Eq. (5.30) has the form of the quantum-mechanical evo-
lution equation, in Heisenberg representation. In order that
the transformed €; be integrable, the matrix H should be
such that the corresponding matrix element of its commuta-
tor with the matrix € contain only elements €; belonging to
the set of existing conservation laws.

Assume there exist 7 independent conservation laws
and denote them with Greek indices, €,5. According to the
Noether theorem, these conservation laws arise from » inde-
pendent generators out of the SU(3) octet, forming a Lie sub-
algebra of order n (if the n generators did not constitute a
subalgebra there would be more than # conservation laws, in
contradiction with the hypothesis). For linear transforma-
tions H belonging to that subalgebra, the n transformed
quantities €/, do exist; and they are expressible as n (inde-
pendent) combinations of the original €4, since the total
number of independent conservation laws is only n. Thus we
have a group of linear transformations, depending on »# con-
tinuous parameters, transforming the »n quantities €, into
each other. Geometrically, there exist # families of curves
U',"/X’,7 = const orthogonal to the equipotential curves
€. = const, each family depending on n continuous param-
eters.

VI. CONCLUSION

Earlier works {Refs. 1-3) have shown the existence of
special symmetries of the Euler equations of adiabatic gas
flow; these symmetries are far from being immediately ap-
parent when the equations are written in any of their usual
forms, and they are not easily interpretable in terms of gen-
eral physical principles either; it thus appeared necessary to
construct a new formalism in which the hidden symmetries
would become manifest.

In the one-dimensional case, which is the subject of the
present work, our main result is that the gas dynamical equa-
tions are separable into an SU(3) invariant subsystem (S') and
a subsidiary equation which generally breaks the symmetry;
in that formulation the hidden symmetries are made mani-
fest. One of its most striking features is the emergence of two
conjugate vector spaces [ X} and {U} of dimension three,
which may be constructed from the six-dimensional manifold
of the physical variables (M, t, P, v, p, r) in a manner deter-
mined by Egs. (3.2) and (3.4). The consideration of these two
vectors introduces a high degree of analytical order in what a
priori looked like a completely noncovariant system. In
terms of X and U the system assumes the compact vector
form of Egs. (3.8){3.10) and (3.13); the formal covariance is,
however, but only to a minor extent, broken by the occur-
rence of a multiplicative factor 7" in the equations. The con-
servation laws are expressed by the Cauchy integrability
conditions of the components €, of a tensor ¢, defined by
Eqgs. (5.13) ; there are at most eight independent conserved
quantities, forming an SU(3) octet, since the tensor € is trace-
less; but their number is generally less than eight (five for a
monatomic gas; four otherwise) as a consequence of the sym-
metry breaking. A geometrical interpretation of the conser-
vation laws in terms of systems of orthogonal curves is also
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presented (Secs. VB and VD).

A curious consequence of the present formulation is the
invariance of monatomic gas flow under Lorentz transfor-
mations in a three-dimensional Minkowski space, as dis-
cussed in Appendix A; it would be very interesting to deter-
mine whether a connection can be established between the
light cones of that Minkowski space and the characteristic
curves.

One of the most intriguing points is the close analogy
existing between the general form of the Euler equations and
the more special form (3.23) discussed in Sec. II1 E, which is
characterized by an infinite number of conservation laws. We
in fact started the present study with that Eq. (3.23), in an
earlier work (Ref. 3), and it turned up as a considerable sur-
prise that so much of the formalism developed in Ref. 3 was
of general validity, so that we may hope that further study of
that equation would yield still more generalizable results.

It is of course tantalizing to attempt a generalization of
the present formalism to spaces of higher dimensionality
(N = 2 or 3). A preliminary study of the spherically symmet-
rical case indicates that part of the formalism is indeed gen-
eralizable, but the spherical assumption is almost certainly
too restrictive to be very useful, as it will mask much of the
underlying covariance that may be present.

The application of the above results to the theory of self-
similar flow is discussed in Sec. IV.
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APPENDIX A: A LORENTZ-INVARIANT FORMULATION
FOR MONATOMIC GAS FLOW

We have seen that a formal SU(3) symmetry is present,
even for arbitrary entropy profiles, and that the symmetry
generally breaks down owing to the lack of covariance of
factor I". We now point out that, at least for monatomic
gases, there still exists an exact SU(2) subgroup of symmetry,
which may be constructed from the generator G, of the
transformation (T *), together with generators G,, G, of time
translation and scale transformation. One easily verifies that
G, G,, G,indeed constitute an SU(2) subalgebra of the SU(3)
algebra that we constructed.

As is well known, SU(2) is isomorphic to the group
SO(3) of three-dimensional rotations, and admits of irreduci-
ble representations of any integral dimension, from 1 to

+ . The simplest one is the spinorial two-dimensional re-
presentation; we find that a possible choice for the spinor
components is

()

Another case of particular interest is that of vector re-
presentations of dimension three; we derive the following
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solution for the vector components:

A vc* + v¥*c
Bl=|v**—vuc], (A2)
C v¥c* + ve

where v*=vt — r, c*=ct, as usual; we note that M is ascalar,
i.e., an invariant of the group. Still another invariant is the
quadratic form

A*+B?—C*=r%, (A3)

so that the group in fact represents rotations in a vector space -

of complex coordinates (4, B, iC), that is to say, Lorentz
transformations in the real space (4, B, C) where the metric
has the hyperbolic signature ( + + —).

The above results make it possible to derive some inter-
esting Lorentz-invariant forms of the partial differential
equation of monatomic gas dynamics. Choosing the scalar
M as unknown function z and the spinor components v, v* as
independent variables x, y, we obtain an equation of the
Monge-Ampére general type:

S —rt4+ar+as+ast=a, (Ad)
(see Forsyth, Ref. 11), where, in standard notations,""

p=2z, q=Ziv, r=p;, s:p’y, t=q'y. (AS)
The equation in fact assumes its simplest form when we
choose z=1/¥ (M) as unknown, and then reads

s —rnt=fz), (A6)

where the arbitrary function fis related to the entropy dis-
tribution o by

flz)=MV. (A7)

[see Eqgs. (3.28) and (3.31) for the general definition of V].
From the discussion of Sec. III E we conclude that Eq.
(A6} has an exact SU(3) symmetry and an infinite number of
conservation laws when f/(z) is proportional toz~*. The isen-
tropic case is characterized by f= const, and is easily inte-
grable. The case where f/(z) is proportional to z~*/° has been
shown to be reducible to the isentropic case (Gaffet, Ref. 2).

APPENDIX B: ROGERS’ CLASS OF INVARIANCE
TRANSFORMATIONS

In their recent book, Rogers and Shadwick [Ref. 12,
Sec. (3;9)] discuss a class of invariance transformations of the
equations of unidimensional, nonsteady, adiabatic gas dy-
namics; these transformations were first introduced by Rog-
ers (Ref. 13). The question naturally arises as to whether such
transformations bear any relation with those discussed in the
present paper; the answer is no, as we presently show.

Rogers’ transformation may be analyzed in terms of a
fundamental symmetry which we denote by (S ), character-
ized by the essential properties that it conserves both the
mass and position coordinate, up to a sign, and transforms
the pressure into its inverse:

(Se)r' =r, M'= —M, P'=1/P.

The remaining variables then transform as follows:
t'= —1I, v=v/P, p'= —pP/P+pv?,
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in our system of notations. These transformation formulae
are reciprocal, i.e., (S )* is the identity. Thus, the time coor-
dinate and the momentum (/7 ) are exchanged by the symme-
try.

Itis interesting to note that our transformation (T'7T"’)
shares with (S ) the fundamental property of transforming
the pressure into its inverse: P’ = 1/P; we recall that the
symmetry (T), first introduced in (Ref. 2), is characterized by
the properties M’ = 1/M,t' = — t. Nevertheless, the
(T "TT')-transformation formulae are on the whole quite dif-
ferent from those of (Sy ); they read

— 2 'y
(TITT')Z P’=i, r’=E—Mv + 7(2 7) MCZ,
P 2 rr=1)
t':MU—”, U'=—U, M’=M, [ 7’ p

P P y' P2’
There is in fact an essential difference between (S ) and our
own class of symmetries, which is that the former does not
leave the characteristic curves invariant. The simplest way to
see this is to start from the fundamental relation (2.1):

d,M = — pc d,t, expressing orthogonality, in the sense de-
fined in Sec. V E, of the systems of curves M = const and

t = const. If the characteristic curves were invariant, the
orthogonality condition would be preserved, and, since the
curves M ' = constand M = const coincide (asM ' = — M),
thecurvest’ = constand ¢ = const would have to coincide as
well. This is not the case, since t ' = IT is not a function of ¢
only. Thus the characteristics are not invariant under (Sy ).
That property might, of course, have been derived directly,
without appealing to the notion of orthogonality. (It can be
shown, in fact, that a transformation that conserves r, M,
and the characteristic coordinates a, 5, would have to be the
identity.)
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It is shown that the equation describing the evolution of the classical continuous Heisenberg

ferromagnet can be regarded as one aspect of quadratically constrained harmonic motion, as it is
also the case in a number of other integrable systems. Two ingredients are used: a method to solve
the inverse scattering problem for second-order operators using ordinary differential (rather than
integral) equations and the equivalence of the Heisenberg chain with the nonlinear Schrodinger

equation.

PACS numbers: 02.30.Jr, 75.10.Jm

INTRODUCTION

A number of nonlinear equations of mathematical
physics have attracted wide attention in recent years.' This
can be traced to the fact that their initial value problem can
be solved, and the study of the solutions so obtained has
revealed a number of surprising properties that were impos-
sible to guess by doing perturbations on the linear approxi-
mation, as well as intriguing connections among rather dis-
parate fields such as group representations, differential
geometry, and scattering theory. Extension of these results
to the quantum domain has permitted the construction of
some nontrivial quantum field theories, unwrapping some
more unexpected links with soluble models in statistical me-
chanics and isomonodromy deformations.’

The origin of the many relations among apparently very
different—both mathematical and physical—systems is still
far from being understood, and much effort is currently be-
ing spent trying to unify what seems unrelated. In this con-
text, Deift, Lund, and Trubowitz>~* have shown that the
Korteweg—de Vries, nonlinear Schrodinger, sine-Gordon,
and Toda lattice equations on the line, as well as the Toda
lattice on the circle, are different aspects of the same system:
quadratic, complex, free oscillators constrained to an inter-
section of quadrics in phase space. This had been shown to be
the case for the Korteweg—de Vries equation on the circle by
Moser and Trubowitz.’ In the present paper we shall extend
these results to the Heisenberg ferromagnet equation. Also,
we shall emphasize one aspect of the procedure that is of
interest in itself: namely, along the way from the original
equation to the constrained oscillators one finds a method to
solve the inverse scattering problem for second-order opera-
tors via an ordinary, integrable, nonlinear differential equa-
tion. This was shown in the case of the Schrodinger operator
by Deift and Trubowitz,® and it is in contrast to the previous
approaches using linear integral equations.”®

The continuous Heisenberg chain and its equivalence to
the nonlinear Schrédinger equation are described in Sec. 1.
Section 2 recalls the map from the space of solutions of the
latter to a new space where inverse scattering for the second-
order operator (2.1) can be regarded as the flow given by
constraining an infinite number of quadratic oscillators to an
intersection of two quadrics (Sec. 3) and the motion generat-
ed by a solution of the nonlinear Schrodinger equation corre-
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sponds to a related flow in the same subvariety of phase
space (Sec. 4). These results are used in Sec. 5 to construct the
announced extension to the Heisenberg chain. Concluding
remarks are given in Sec. 6, and the appendix contains de-
tails relevant to Sec. 3, inverse scattering.

1. THE CONTINUOUS HEISENBERG CHAIN

The continuous Heisenberg spin chain is a one-dimen-
sional system with dynamical variables S;(x,t),j = 1,2,3,
taking values on the unit sphere: S2 + 53 + 82 = 1. The
motion is governed by the Hamiltonian

1 o i i
H:—f 59év—‘aidx, (1.1)
2 J_. dx Ox
with boundary conditions
S — (0,0,1) (1.2)
and Poisson brackets
[ (x2S (1)} = €581 (x,2)8(x — ) . (1.3)
This gives the equation of motion
2
s =S 8_§ . (1.4)
ar Ix?

It is easy to check that this equation preserves the constraint
S? = 1. The initial value problem for this system was shown
to be solvable using the inverse scattering method by Takh-
tajan.” Later, Zakharov and Takhtajan'® proved that, in a
sense, this system was equivalent to the Schrodinger equa-
tion with a cubic nonlinearity:

2

i L4 T8 2Py —o. (13
The sense of this equivalence is as follows: Both Egs. (1.4)
and (1.5) implement the vanishing of the curvature of certain
connections in a principal fiber bundle with structure group
SL{2,R),"! and there is a gauge transformation that trans-
forms one connection into the other. More explicitly, the
nonlinear Schrodinger equation (1.5) is the compatibility
condition for the linear system

9® _ =U,® 9@ =V, (1.6)
x t

with (¢, =d/dx)
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we( )

—yY*ik
y _(_2ik2+i|¢|2 2kt + i, ) (1.7)
O\ 2kgr iy 22—y
and the equation of the Heisenberg chain written in the form
9 _ —i[s, @], (1.8)
at 2L ax?

where § =S,0’ and ¢’ are the Pauli spin matrices, is the com-
patibility condition for

oP ap

= , — =V, D, 1.9

8X 2 at 2 ( )
with

U,= —ikS,

V, = kSS, — 2ikS .

The point is'’ that if ¥/(x,# ) is a solution of (1.5) with y—0 as
|x|— o0, then the solution of

with g—1 as x— + oo is such that S = g~ 'o’g is a solution
of (1.8) with S—o0, as x— + . Moreover, recall that

a0 _(=k ¥,

ax — yY* ik
can be interpreted as a scattering problem when ¢—0 as
|x|—> o0 . If the reflection coefficient corresponding to the
given ¥ vanishes at zero, i.e., R (0) = O, then one has S—o; as
X— — oo also.

2. CONSTRAINED OSCILLATORS AND THE
NONLINEAR SCHRODINGER EQUATION

It was shown by Deift, Lund, and Trubowitz>* that the
study of Eq. (1.5) could be reduced to the study of a system of
harmonic oscillators with quadratic constraints. Below we
shall show that this is also true for the Heisenberg chain,
using the results of Zakharov and Takhtajan that we have
just sketched. First, we recall some features of this equiv-
alence of the nonlinear Schrodinger equation with a system
of constrained oscillators.

The equation

P _(—ik qlx)
x ( rix}) ik ) ¢ (2.1)

with g,r—0as |x|— oo hasuniquesolutions f(x,k Jand 4 (x,k )
with asymptotics

e ikx 0 )
fx—-»—-:oc( 0 eik" ’

0 e-ikx
hxﬁ:_jw<_eikx 0 )’

and they are related by & = fT where T, the transition matrix
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r= (T oY 22)
b (k) —a (k)
issuchthata,a_ + b, b_ = 1. The reflection coefficients

R , (k) are defined by
R, (k)=b, (klai'(k).

Notice that (2.1) seems to be more general than what we
need, as we are interested in the case — r* =g = . How-
ever, this extra freedom is needed to get the map to the con-
strained oscillators, which is constructed as follows: given
g(x), r(x), the solutions £ and g as well as the reflection coeffi-
cients are uniquely determined. Define then new functions
X, (k), Y (k) through*

X (k)= (R (k)/mk)"*f,,(0.k),
Y. (k)= (R (k)/7k) " [nl0k),

(2.3a)
X_(k) = (R_{k)/mk}'"*f;,(0,k),
Y_(k)=(R_(k)/7k)"*f,,(0k),
for real k #0, and
X, (0)=(1/V + 2i)( /12(0,0) + £1,(0,0)) ,
(2.3b)

Y, (0)=(1/V £ 2)(/2,(0,0) £ /2,(0,0)) .
Here we are assuming R (0) = R_(0) = 0, which is enough
for our purpose, the study of the Heisenberg chain when
S—>0, a8 x— + . The more general case R {0)#£0 appears
in the nonlinear Schrodinger case.* It is straightforward to
consider it, although it is more cumbersome. Also, define'?

2ic; . \'? .
Xij = ( kji ) le(O’kji )y 7= 1,“.,71 ,
11

]+

(2.3¢)

21‘(} 172
ro = () a0k, ).
J £ 21

Here, k;  (resp. k,_ )aretheeigenvalues of (2.1) given by the
zeroes of @ _ {resp. a_) in the upper (resp. lower) complex k
plane. In general the number of eigenvalues whose imagi-
nary part is positive need not be equal to the number of eigen-
values with negative imaginary part. For the case at hand,
however, it is enough to consider this case. The ¢’s are given

by

_~ ’
Gy =G, /a,

where
a __da
(T ’
dk =k,

and ¢ is given by the asymptotic behavior of the eigenfunc-
tions:

0 e—ikj+x
-~ _eik};x 0 X—> — o0,

Z‘j_e—ikjix 0
-~ ~ ik, x X— + o0 .
0 ¢4 €

So, given two functions g(x), #{x} one inserts them in
(2.1} and extracts all the information that can be given by the
resulting scattering problem—Jost solutions, reflection co-
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efficients, eigenvalues and eigenfunctions—and plugs it into
(2.3). This gives a map

(g}~ X, ).
The question we want to address is: How do X and Y
change when ¢ = — r* and ¢ evolves according to the non-

linear Schrodinger equation (1.5)?

3. TRANSLATION FLOW AND INVERSE SCATTERING

Consider first the simpler evolution

q()r(-)—gl- + ). + 1) (3.1)

That is, the potentials simply move by a uniform trans-
lation to the left with unit speed. What is the motion of the
X ’sand Y’s induced by the map (3.1)? The answer is*: X and
Y evolve according to the differential equation

X, (k)= —ikXt(k)——(E lX,2>Yi k),

Y, (k)=ikY, (k)— (z 1Y,2>Xi k),

X, =—ik X, — (z IX,Z)Yij ,

Y:tj =ik ;Y ., + (E lez)Xij ’

for keR andj = 1,...,n. We have written

SXN=S (k. X%, +k_X*)

+f+°° 1, () + X2 ()l

and similarly for 2/Y ;. Equations (3.2) are a system of ordi-
nary, nonlinear differential equations. Notice that X , (0)
and Y, (0) decouple from the other variables, that is, the
motionof X  (k), Y, (k)(k #0), X, ;, Y, is not affected
by X (0), Y (0),and oncethe X, Y fork 5 0areknown, substitu-
tion in (3.2) gives a linear equation for X (0), ¥ (0) with time-
dependent coefficients.

The first important remark* is that (3.2) are the equa-
tions corresponding to the Hamiltonian

Hy= — S ikX, Y, , (3.3a)

with Poisson brackets

{Xaps Yo} =8,4,0k—1), ab=+,-—,

(3.3b)
(XX} ={Y,Y]=0,

and constraints
¢ = z X2=0,
¢, = 2 Yk2 =0,

with variables X, Y satisfying the initial condition (automati-
cally preserved in time)

SX Y= —i.

(3.3¢)

(3.4)
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The dynamical system given by (3.3) is what we call a system
of (complex) harmonic oscillators with quadratic con-
straints.

We have a map (g,7)—(X,Y). Is it possible to go back-
wards? The answer is yes, due to the identities*'?

a0 = — (0% (k) + X (ke dk+ X%, + X7 ),
! (3.5)
RO = [ (Y% )+ Y2 (e dk + S AV, + V7).

So, as we consider different potentials in the one-parameter
family (labeled by ¢ ) given by (3.1), X, Y will change according
to (3.2), and (3.5) will give the value of each potential at the
origin in terms of the value of X,Y at “time” ¢. But the value
of the potentials g(- + ¢ ), 7{- + ¢) at the origin is nothing but
the value of g(-), /{-) at a distance ¢ from the origin! So, given a
solution of (3.2) we can reconstruct the potentials ¢,r this
way. Indeed, the (singular) initial value problem given by
(3.2) with initial conditions, as t— + <o,

X, (k)=0, Y, (k)R (k)/mk)"?,
X_(k)}>(R_(k)/mk)''?, Y_(k)>0,
X, 0—+1x2, Y, 0=I/N£2,
X+J'_>O’ Y+J'"’(2icj+/kj+ )1/25j+ s

X _,—{2ic;_ /k;_ )% Y_,—0,

j J= J

(3.6)

solves the inverse scattering problem for ¢,7. That is, given'?
R, ,k;, ,c;, onehasinitial data for the evolution equation
thatwillgiveX (¢), Y (¢ )and, withit,g(¢ ), /{¢ through (3.5). One
still has to make sure that this initial value problem has glo-
bal solutions. But this is assured because (3.3) is a completely
integrable system! This is seen by explicit construction of a
complete set of integrals of motion in involution'?

1

a.

k :Z(k_l)VI(ngYb]"“Xb]Yak)z, a’b:: +’_ .
bt
(3.7)

In this approach then, the inverse scattering problem for
(2.1) has been solved through a set of coupled, nonlinear,
ordinary, integrable differential equations. This is in con-
trast to previous methods of solution”® using a linear inte-
gral equation. Notice that (3.4) is automatically satisfied by
the data (3.6). The case r = I ¢*, of interest for the nonlin-
ear Schrodinger equation ig, + ¢, + 2|q|’*q = Ois obtained
by imposing

X_=(Y%, Y_=—@X*, (3.8)
on the initial data. It is immediate to check that this condi-
tion is preserved by the flow (3.2). In terms of scattering data
this means having

R (k)= £R* (k), k_ =k},
(3.9)
G- =x¢h, §o= L,

where the star denotes complex conjugation.

We have seen then that when g, change according to
the translation flow XY evolve as a system of harmonic oscil-
lators constrained to the intersection of the two quadratics
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(3.3¢c). It is simple to check” that, in terms of the action varia-
bles (3.7), this motion is generated by the Hamiltonian

- 12
H=— (z ka) (z kzlk) ,
with constraints (3.3c).

4. NONLINEAR SCHRODINGER FLOW

The original question we had in mind was to find the
motion X,Y when ¢ = — r* evolves according to the nonlin-
ear Schrodinger equation. The answer can now be given

quite simply*'?%; consider

H,=S Kk, . (4.1)

The flow generated by constraining this second Hamiltonian
to the same subvariety (3.3¢) obviously commutes with the
one generated by H, and is also integrable. The point is that
when g( = — r*) obeys the nonlinear Schrodinger equation,
XY change according to this second flow,* with initial data
(preserved by H,) satisfying (3.4) and (3.8). It is in this sense
that the study of the nonlinear Schrodinger equation is re-
duced to the study of an integrable system of constrained
harmonic oscillators.

5. HEISENBERG FLOWS

We are now in a position to go back to the Heisenberg
chain. We have already mentioned that given a solution
¥(x,t ) of the nonlinear Schrodinger equation, one finds a so-
lution S (x,¢ ) of the continuous Heisenberg chain
S (x,t}) = g~ 'o’g by solving the system (1.10). The converse is
also true'®: take S (x, ) a solution of (1.8) with boundary con-
ditions S—a as |x|—>c0, WithS2=1,S=S*, tr S=0; it
can be diagonalized by a unitary g{x,¢ ), S = g~ 'o,g. Sincegis
unitary, (Jg/0x)g " is anti-Hermitian. Moreover, it is al-
ways possible to choose g such that (dg/dx)g ™" is off-diag-

onal:

with a unique y{x, ) that automatically goes to zero when
S—o; with g going to a constant unitary diagonal matrix.
Then, it can be shown'® that ¢ is a solution of (1.5) and that

% i _.(!1//!2 v )
e Lo, ) (5.2)

From this we see that, with the boundary condition g—7 as
Xx— + 0, g is nothing but the solution fof (2.1) evaluated at
k=0:

g(x’t) =f(x,0,t) .

In other words,

i(XAO)—iY"; (0) X.(0)+iY% (0)) 53
2\Y,0+X% (O Y, 0-ixt o)
So, if we consider the translation flow for $: S (-} =S (- + ¢ ), we
have induced a flow ¥(-)—(- + ¢ ) through (5.1), which in

turn induces a flow for X, Y given by (3.2) which is generated
by the Hamiltonian H,, (3.3a) with constraints (3.3c). Now to
go back, that is to recover S (- + ¢ ) from a solution to this set

glx,0) =
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(i.e., the oscillator set) of differential equations, one simply
uses (5.3) and S = g~ 'o.g. That is, of the infinitely many
oscillators that are evolving, only one (X (0),Y (0)) is needed to
know how § is changing. Of course, the evolution of

X (0),Y(0) is not autonomous but coupled to that of all the
rest. This is to be contrasted to the situation in the nonlinear
Schrodinger case (3.5) where a combination of all the oscilla-
tors gives the behavior of g,». Exactly the same situation is
true for the flow S(-}—S(-,¢) given by (1.8), the Heisenberg
equation, which corresponds to ¥(-}—(-,¢ ), the nonlinear
Schrédinger flow, which in turn corresponds to the flow gen-
erated by H, (4.1). Given a solution to this new differential
equation, S (-)—S (-, ) is recovered through (5.3). Indeed, it is
possible to check directly that (5.2) is the differential equa-
tion obeyed by X (0), Y (0) with Hamiltonian H, and con-
straints (3.3c). This is achieved by deriving formulas analo-
gous to (3.5) for ¥, and |22

6. CONCLUDING REMARKS

We have constructed a map from the space of solutions
of the continuous Heisenberg chain equation to a space of
solutions of an equation that is obtained as a flow in an inte-
grable system of free quadratic oscillators with quadratic
constraints, using the nonlinear Schrodinger equation as a
crutch. As mentioned in the introduction, a similar map can
be constructed for a number of partial differential equations,
thereby unifying them in this sense.

In the case of linear equations the Fourier transform
can also be regarded as a map to a space of quadratic uncou-
pled oscillators. The nonlinear equations we have considered
are then characterized by the fact that the nonlinearities are
introduced into a linear system by a finite number of qua-
dratic constraints. This is similar to what happens in the
nonlinear sigma models,'® in which case the number of con-
straints is infinite: one per space point.

In conclusion, we may say that KdV, nonlinear Schro-
dinger, sine-Gordon, Toda lattice,and Heisenberg chain are
but different aspects of the same system, harmonic motion
quadratically constrained to a subvariety of phase space.
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APPENDIX

It was mentioned in the text that the inverse scattering
problem for the operator

_9
= ¥ ! Al
- a ’ ( )
_r R
dx

where g¢,r are complex-valued functions of a real variable,
can be reduced to the problem of solving a nonlinear, inte-
grable, ordinary differential equation. This was done for the
Schrédinger operator on the line by Deift and Trubowitz,®
and for the operator L by Deift, Lund, and Trubowitz.* Here
we give some details that were omitted in the last reference.
The spectral theory for (A 1) was given by Zakharov and
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Shabat’ and by Ablowitz et al.® The eigenvalue problem
LD = ik® (A2)

is equivalent to Eq. (2.1). The spectrum of L consists of a
continuous part, the real line, and a discrete part given by the
zeroes of @, and a_ [cf. (2.1)] in the upper and lower halves
of the complex k plane, respectively. If ¢,» decay faster than
any power of z at infinity, the number of zeroes of a, anda
is finite. Their multiplicity is not restricted, and, to the best
of our knowledge, a necessary and sufficient condition on the
potentials ¢,7 ensuring that the zeroes are simple has not
been found. All treatments assume a__,a_ to have only sim-
ple zeroes, and we shall do so here as well. Also, in principle,
they could lie on the real axis in which case they would not
correspond to bound states but to resonances.

This would not add any difficulties but would make the
formulas more cumbersome, so we shall assume there are no
real zeroes.

Next, take r = — g*. In this case, using (3.9), the fol-
lowing is true'?:

N

W) =2 S ¢ fAlok) =2 S cf Rxk)

1 r dk (R (k)f 3(xk) + R *(k F20xK),
T J-—-
{A3)

where we have dropped the  + ” subscript. Then, substitu-
tion of (A3] into

i) = Co W) w0
keR, k=k,. . ky,

gives a nonlinear ordinary differential equation for f;,, f3,.
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Given R (k ), k;, and ¢; together with the boundary condition

(). ()
j;Z X— + eikx ’

the corresponding initial value problem can be solved, and
substituting the solution back in (A3) gives ¢(x), solving the
inverse scattering problem. Equation (A4) has global solu-
tions because with the definitions (2.3) it turns into (3.2)
which, as we saw in the text, is an integrable system.
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A set theoretic argument is utilized to develop a recursion relation that yields exactly the
composite nearest-neighbor degeneracy for simple, indistinguishable particles distributed on a
2 X N lattice space. The associated generating functions, as well as the expectation of the resulting

statistics are also treated.

PACS numbers: 02.50. + s, 05.50. + q

I. INTRODUCTION

The present paper considers the problem of determin-
ing the composite nearest-neighbor degeneracy for a 2X N
rectangular lattice space. Specifically, we develop a recur-
sion relation that yields exactly the multiplicity of those ar-
rangements of simple, indistinguishable particles on a 2 XN
rectangular lattice that create prescribed numbers of the
three possible types of nearest-neighbor pairs [occupied
pairs (particle-particle), mixed pairs (vacancy-particle), and
vacant pairs (vacancy-vacancy)]. We represent these
numbers by 1,,, ng;, and ny,, respectively.

A number of previous papers have dealt with the near-
est-neighbor degeneracy for one-dimensional, 1 X N lattice
spaces when the number of one type of nearest-neighbor pair
is specified,' > as well as the composite degeneracy when the
numbers of all three types of nearest-neighbor pairs are pre-
scribed.® Kedem® has also discussed one-dimensional near-
est-neighbor degeneracies and their relationship to sufficient
statistics associated with binary stationary mth-order Mar-
kov chains. He applies his results to a determination of the
asymptotic distribution of rare events. Yan® has treated sev-

Adding Eqgs. (2) and (3), while considering Eq. (1) yields
the expected result that

8, +8,=4.
t
o+
——
+0
} 4
o +
Ll |
LR T
OT0
—1—
1 i
L 1
O x
L il
T L)

eral interesting one-dimensional nearest-neighbor degener- + 0
acy problems involving particles that occupy integral } -
numbers of linearly contiguous lattice sites. o+
We first note that the quantities 7, n,, and ny, are not 0
independent when A is specified because their sum is the Ll
total number of nearest neighbors, regardless of the number O+
of particles present, i.e., H 4
3N —=2=mny,+ng + neo - (1) OO
[Here, as elsewhere, we do not distinguish between 0-1 and . 't
1-0 nearest neighbor pairs.] ' "
If, from each occupied lattice site, we draw three lines T0
connecting the occupied site with its nearest-neighbor sites, $ -
there will be a total of 3¢ lines where ¢ is the number of O+
particles (see Fig. 1). Accounting for these lines yields 'y
3¢ =2n,, + ne, + 6y, (2) lol 4
where &, is the number of lines that go off the ends of the ] .
lattice space when one or more of the four end sites are occu- ' T
pied. A similar construction for the vacant sites results in + O
3[2N — g] =2n4p + 1o, + &5 . (3) {
261 J. Math. Phys. 25 (2), February 1984 0022-2488/84/020261-05$02.50

(4)

FIG. 1. On this 2 X 14 space there are 16 particles,
so there are 48 lines. From each particle are drawn
three lines, each line to a nearest-neighbor site.
There are eight occupied nearest-neighbor pairs,
with each of which is associated two lines, and 30
mixed nearest-neighbor pairs; §, = 2.

© 1984 American Institute of Physics 261



When calculating the nearest-neighbor degeneracies, one
must take account of the end-to-end as well as the top-to-
bottom reflections of the lattice space. This additional de-
generacy factor depends on the state of occupation of the
four end sites, i.e., it depends on the & ’s. As previously dis-
cussed,* the degeneracy factor for a one-dimensional lattice
space [which is either 1 or 2 (for an end-to-end reflection)] is
completely determined by whether n,, is even or odd. As can
be seen from Eqgs. (2) and (3), whether n,, is even or not does
not specify the state of occupation of the four end compart-
ments and hence does not dictate the value of the degeneracy
factor for a 2 X NV lattice (which may be 1, 2, or 4).

Note that if N, g, n,,, and n,, are specified, n,, is fixed
and the values of the individual § ’s are determined uniquely.

We designate 4 [NV,q,n,;,140] to be the total number of
all possible arrangements when ¢ particles are distributed on
a2 XN latticein such a way asto create n,, occupied nearest-
neighbor pairs and ngy, vacant nearest-neighbor pairs.

11. RECURSION RELATION FOR A[N,G,/711,/00]

Toestablish arecursion for 4 [N,q,n,,,n4,], Wwe must first
differentiate between an (¥ )-space (which consists of two
aligned rows of ;¥ equivalent rectangular sites) and a B (N )-
space [an a(N )-space to which an additional lattice site is
affixed at the lower left-hand corner] (see Fig. 2).

Next we definea[N,q,n,,hq0] to be the set of all arrange-
ments of g particles on an a(/N )-space that contain n,, occu-
pied and ny, vacant, nearest-neighbor pairs. Thus
#a[N,q,n,,,n4), the number of elements of a[N,q,n,,,n4,] is
A [N,g,n 1,100}

Let a;[N,q,n,,,n40] (j = 1,...,7) be subsets of
a[N,q,n,,,n). Each of the a,’s is characterized by the state of
occupation of the four end sites (see Fig. 3). Every arrange-
ment in g; differs from every arrangement in a, (j#k), i.e.,

a;[N,g,n 0] Na [N ny ] =9, (5)
a null set.

In addition every element of a[V,q,n, ,14,] Will be found
in one of the a; [ N,q,n,,,h], i€,

5
a[N’q’nll’nOO] = 'Ul a; [N’q’nllxnool . (6)
j=

We conclude then that #a[N,q,n,,1), the number of
elements of the set a[N,q,n,,,n,0] is given by

;
H#a[Ng,n ,ngl = Z #a;[Ng,n,1,n00]

j=1

or (7)
7
A [Ngn,ng] = z A;[Ng.ny,ne0l

j=1
where, four example, #a,[N,q,n,1,n00}=A4,[N.q:n,,100] 18

L

LTS @
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FIG. 2. (a) Definition of an a(N )-
space. (b) Definition of a S (N )-
space.

ERR R

1 "....- A, [N'Q-nn-%]
Ll 11
ﬁ-.. A, [N.g. n,.ng,)
Lo T 13 el

2 kKEEREN A, [N- q, Ny, noa]

FIG. 3. Seven a-spaces are charac-
terized by the state of occupation of
the end sites. The end-to-end and
top-to-bottom degeneracy factors
are indicated numerically proximate
to the appropriate space.

Ml Ngg |

A, [N- q. r‘mnao]

n . .. A [Nvann-noo]

AY [NvQ-nuvnw]

the number of arrangements when one and only one of the
four end sites is occupied. The end-to-end and top-to-bottom
reflections of the arrangements contained in a, result in a
degeneracy factor of four (4). The degeneracy factor associat-
ed with each of the seven subsets, a; (j=1,...,7), shown in
Fig. 3 is indicated next to the corresponding figure.
Similarly, Fig. 4 serves to define sixteen subsets of
b [N,q.n,,n4), the set of all arrangements of ¢ particles on a
B {N )-space that create prescribed numbers of occupied and

o] ¥
i.-. B, [N- Q. Ny noc]

mmms au SLIVTLEN 6 18,070

HHH e
A s mvennd
sivannd G oive ]
cHHHE amvanm
HHH

B, [N. q. ny. nge)

T T B,[N. q

n====g Bu [ N, g, n,. noo]

SHHE e LR eaivand

ﬂ=-=== By [N' - M n°°] i ==g B [N a. nu'noo]

FIG. 4. Sixteen B-spaces are characterized by the state of occupation of the
end sites.

Be [N.q. M noo]
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FIG. 5. This figure shows the decomposition of the set of a,[N,q,1, 1)
into two mutually exclusive subsets on the basis of the state of occupation of
the top site in the N — 1 column.

Ay [N.a.nqq.mgo]

By [N-1,9,ny4,ngo-2]

vacant nearest-neighbor pairs. The degeneracy factor for all
b;[N.g,n 1,ng0] (j = 1,...,16)is unity. Thus, b,[N,q,n,,n00] is
the set of all arrangements on a 3 (N )-space when g, »,,, and
ng, are specified and when the top right-hand site is occupied
(and all the other end sites are vacant). Because

16
b [N.g.nnel = .Ul b;[N,q,n 1,n00] (8)
j—

we conclude that
B [N’q’nllr”()o] E#b [qu’nlbn()o]

16

= Z #bj [N,g,ny1,100]

j=1

16
= z B;[N,g,n1,ng0] - (%)
Jj=1
Next we decompose each of the seven g;’s into two sub-
sets, one in which the top site in the (¥ — 1)th column is
vacant and one in which that site is occupied. Similarly we
decompose each of sixteen b;’s into two subsets, i.e., on the
basis of the state of occupation of the top site of the (¥ — 1)th
column. There is closure in the sense that the decomposition
of any of these twenty-three sets results in two subsets, both
of which are members of the twenty-three sets.
As an example, consider a,[N,g,n,,,n4] (see Fig. 5). If
the top site of the (N — 1)th column is vacant, a S (N — 1)-
space is created on which all four end sites are vacant. The
set of all arrangements of ¢ particles on such a space is
b,[N — 1,q,n,,,ny — 2] because n,, occupied nearest-neigh-
bor pairs and ny, — 2 vacant nearest-neighbor pairs must be
created [two vacant nearest-neighbor pairs have been ex-
cluded from the B (N — 1)-space].

|

1A [Ng+ Liny + Ling) = B[N — 1,g,n,, + Ling] + B[N — L,q,n,,,140] ,
LAS[N,g + Liny, + Lingl = B[N — Lg,n,, + Ling] + Bo[N — 1,q,n,,,n00] ,
VALN,g + Ling, + Ling] = Bs[N — 1,g,n,, + Ling] + Bo[N — Lg,n 00
VAS[Ng + Ly + 2,n00] = By[N — L,g,ny, + 1ngy] + Bg[N — Lg,ny,n00l
146[Ng + Lny, +2,n00] = B;[N — 1,g,n,, + Ling] + B[N — L,g,n; + ngel
A;[Ng + Liny + 2n00] = B[N — Lgny; + Ling] + Bi6[N — L,g,n,5,n00] .

N

i AERE
foaRE

ﬂ§== (%)A, [N.a,nq4.ng0]

FIG. 6. This figure shows the decomposition of the set of b,[N,q,7,,,n4)
into two mutually exclusive subsets on the basis of the state of occupation of
the bottom site of the N — 1 column.

If, on the other hand, the top site of the (¥ — 1)th col-
umn is occupied, a (N — 1)-space is created on which the
top left-hand site is occupied and the remaining three end
sites are vacant. The set of all arrangements of g particles on
such a space is b5[N — 1,¢,n,,,ny, — 1] (see Fig. 5).

Every arrangement in b,[N — 1,g,n,,,n9o — 2] differs
from every arrangement in b5[N — l,q,n,,,hy0 — 1] by the
state of occupation of the top site of the (¥ — 1)th column,
ie.,

b [N — 1g.n hg—2] 00 [N — Lgn,,ng—11=0.
(10)

In addition, every element of a,[NV,q,n,,,,,] Will be found

either in b,[N — 1,¢,n,,n50 — 2] Or in

bi[N — Lg,n,,ng — 1], i€,

By [N.a.nyq.ngq]

Ay [N.a.nqq.ngg-1]

a,[N,g,n,n00]
=b,[N— lLg,n,ne — 2]
Ubs[N — Lg,n ,ne — 1] . (11)
We conclude that

#a [Ngningl = #b,[N— 1,g,n,,,n50 — 2]

+ #b3[N — Lgn ,ne — 11,
or reindexing we obtain
A\ [N,g,n,nh, + 21 = B[ N,g,ny,,100]
+ B;[Nygny,nge + 1] . (12a)

By decomposing the remaining a; sets in a similar
manner we arrive at the following equations

(12b)
(12¢)
(12d)
(12¢)
(12f)
(12g)

Similarly, we can decompose each of the sixteen b sets into two subsets on the basis of the state of occupation of the
bottom site in the (¥ — 1)th column. This gives rise to the following equations (see, e.g., Fig. 6):

Bl[Nﬂ,”n:”oo"' 1] =A1[N’q:”11,”00] +};A2[N,4s”11snoo+ 11,
B,[N,g + Liny, + Ling] = A,[N,g,n, + 1,n4] + 1 4:[Ngn;,ng] ,
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(13a)
(13b)
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B;[N,g,n ,np0+ 1] = L A, [Ngny i) + %As[N’q:”m”oo +1], (13c¢)
B,[N,g,n,n00 + 11 =S A,[N,g,ny,n00] + L As[Ngn 00 + 1], (13d)
Bs[Ngnyy,ngo + 11 = L A,[N,qun 1,n0] + 3 A3[Nognyynee + 11, (13e)
Bo[N.g + Lnyy + Lingl = A:[Nyg,nyy + Lingo] + L1 As[N,g,n11,n00] (13f)
B;[N.g+ Lny + Lingl =5 A:[Ngny, + Lingol +§ 44[N,g,n,ne0] (13g)
By[N,g + Linyy + Lingl =3 A,[Ng,ny, + Ling] + 5 A3 N,g,n,1,n0] , (13h)
By[N,g,n ,nge + 1] = %As[N»Q:nn,”oo] + %Aﬁ[N’q,nu»”oo + 17, (13i)
B[ Ngn ,ne+ 1] =1 A,[N,g,n,,n] +iA6[qu,”11,”oo +17, (13j)
B [Ngn e+ 1] =L As[N,g,n 0] + 3 Ag[N,g,n g + 1], (13k)
B,[Ng+ Lny + Ling) = %Aa[N’q,”n + Lingel + 1 46IN,q,n 1,000] {13])
B3[Nyg + Ly + Lingl = %A4[Na97”11 + Ling] + ‘%AG:[N’q’nllrnOO] , {13m)
B [Ng+ Ln + Ling) = %As[N,q»”u + Lng] + iAﬁ[N:q’”m”oo] s (13n)
B\s[N.gny,nge + 1] =1 Ag[Nyg,ny,ng0] + 4,[Nyg,nynge + 11, {130)
B s[Ng+ Lny 4+ Ling] = ‘%AG[N!q’nll + Lnge] 4+ 4,[Ng,ny1,n00] - (13p)

Equations (12) and (13) may be solved for any one of
these quantities 4;[N,g,n,,,n4]. For example solving for
A [N,g,n,1,n00] results in

A [N+ 3,9+ 3,1y, + 4ngy + 4]
= AN+ 2, + 3,n, + 4,150+ 1]
+ A [N+ 2,9+ 2,n,, + 4,14 + 4]
+ AN+ 2,94 2,n, + 3,150 + 3]
+ A [N+ 2,49+ L,n,, + Ling + 4]
+ A [N+ 1,9+ 2,n,, +4,n+ 11
— A, [N+ 1,9+ 2,n,, + 3,n4]
+ A [N+ 1,g+ Ln, + 3,n00 + 3]
—A[N+1,g+ 1,n,+ Lng + 1]
+A4,[N+ Lgn,; + Ling + 4]
— A\[N+ lL,q,n,,n00 + 3]
—A,[N,gny, + 3,150 + 3]
+ 34,[N,g.ny, + 2,000 + 2]
—34,[N,g,nyy + Lingg + 1]
+A1[N,q’n11,n0()] . (14)
It is important to note that a recursion of the same form
is obtained for all the 4, [N,g,n,,,n4] as well as for all the
B;[N,g,n,1,n0]. The only consideration that differentiates
these sets is the differences in the initial conditions. We con-
clude that the structure of the recursion given in Eq. (14) is
valid for any and all @ and b sets and represents a property of
the 2 X N lattice.
In this regard it is interesting to note that if we subtract
Eq. (2) from Eq. (3) we obtain
JIN—ql =ngo—n,, + %(50"51)’

so that any change in the values of N, ¢, n,,, or ny, must
conform to

3[AN — Aq] = Angy — 4n,, . (15)

An examination of the arguments of 4, in Eq. (14) indicates
that Eq. (15) is always satisfied.
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IIl. GENERATING FUNCTIONS AND EXPECTATION

We first form the polynomials

fvvq(x,y) = 2 ZA [N,q’n”,noo]xnnymxv ) (16)

T Moo

If the value of n,, is specified then the sum over n,, contains
five terms as can be seen from the elimination of n,, using
Egs. (2) and (3), i.e.,

3N —q] +ny+ [(6,—80)/2] = ngo., (17)

where [(6, — 8,)/2] can take on the values
—-2,—L0,+ 1, +2.
Upon substituting into Eq. (16) a recursion for
A [N,g,n,,,00) Of the form given in Eq. (15) we obtain the
following relationship for fy , (x, y):

Soisgs 369 =V n s 0g4:0x,9)
+ (1 + 2Py 24205 9)
+ P =y 194206 )
+ Xy 201 (%))
+xy(1 — XYy lgr1l® )
+ (1 = xp)fy 4 100, )
—xy(1 — xp)fu g%, y) . (18)

Equation (18), combined with the initial conditions
froe, ) =p, fiilx,y)=2, fi.lx,y)=x,
Lo, )=, forlx, p) =47,

fialo, p)=2+4xy, fislxy) =47,

Sralx, y) = x4,

Lol V) =y, fiile,y)=4° + 2%, (19)
L2 ) =4 + 47 + 20 + dxy* + 37,

fo3%, ¥) =2 + 4xp® + dxy + 6x%y° + 4x?y,

fralx, p) =x%p + 4x* + 4x%y + 4x° + Xy,

fiso, p) =2x +4x°, figlx,y) =%
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will generate, as coefficients of the various powers of x and y,
the required degeneracies.
When x = y = 1, Eq. (18) reduces to’
fN+ 3.9+3 =fN+ 2,g+3 + 2fN+ 2,g+2 +fN+ 2g9+1> (20)
which, as expected, is the recursion for (243 ?).
|

If we next form the polynomials

o«

hix,y,z0)= 3 3 fungl% p2n™ (21)

N=1

and substitute Eq. (18) for £, (x, y), we obtain

h(x,y,z,m) = n{gilx, y, 2) + 1(gAx, y, 2) — g4(x, ¥, 2) [ ¥’ + 2(1 + xy) + x°2°]
+ 77 (g% ¥, 2) — galx, ¥, 2)[ ¥ + 2(1 + xp) + x°2%]

— g%, 3, 2)[ Y(1 — xp)z + xp(1
— [ Y (1 — xp)z + xp(1

where

gnlx Z)EZfN,q (x, y)z* .
q
Forx =y =z =1, Eq. {22) becomes
(11,1, ) = dn/(1 — 4n) . (23)

To determine, from the recursion given in Eq. (14),
(n;)n, the expectation of n,;, we define

<011>N,qE[3N_2]_'<nll>N,q’ (24)
where
2 —1
<”11>N.q5( ;V) 2 nyA [N,g,n ;0] (25)
in which
2
Z A [Ngn,ngl = ( ;V) (26)

Utilizing Eq. (14} in Eq. (25) we obtain a recursion for
<911>N,q:

(Z;V)(sN 260w

= (ZNq_ 2)(3N— SO N 1g

2(2N_ 2)(31\’— SOy 1g-1

g—1

(25—_22)(31\’— 561N 1g-2 + 3(2;’—-22) ‘
(27)

Assuming
<611>N,q = (0]1>N—i,q—j = <911>

(i,  fixed and finite when ¥ and ¢— oo in such a way that g/
2N =6 remains fixed), we obtain
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—x2 + (1 —xp2®]1}/{1 — [ 3> + (1 + xp)z + x°2%)
—xH)2 + X1 — )2’} + 9’ [xo(1 — xpP2%] ], (22)

[

(©u) = Jim @)y, = fim (27 / (,)

g— o g—> o0
qlg — 1) 2
=lim 2" _g2, 28
N—w 2N (2N — 1) (28)
g

An examination of the arguments of the fundamental
recursion, Eq. (14), reveals that there is a symmetry in the
index subtracted from n,, and n,. For example, n,; — 3 and
nyo — 3 both appear four times. Thus we may conclude from
Eq. (28) that {8,,) = (1 — 8)? and that (8,,) =26(1 — 8).

IV. CONCLUSION

A recursion relation is developed that permits an exact
determination of the number of arrangements of ¢ simple,
indistinguishable particles on a 2 X N lattice that exhibits a
prescribed number of occupied and vacant (and mixed) near-
est-neighbor pairs. Utilizing this recursion we have calculat-
ed the associated generating functions and the expectation of
ny,.
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The damped linear and the forced harmonic oscillator are used as standard examples for a
dynamical system with a time-dependent Hamilton function to investigate the problem of
constructing a Hilbert state space and evolution operators in this space.

PACS numbers: 03.20. + i

INTRODUCTION

It has been shown '™ that if the spectrum of the one-
parameter group a = {a,|t€R} of time evolution operators
of a dynamical system in a Hilbert state space H has a non-
void absolutely continuous part then the system can have a
nonvanishing microscopic entropy production; i.e., there
might exist a positive linear operator M with domain and
range in H so that

(FoME)>0 (fi=a,f) (L1)
4 fMp)<0 (L2}
dt

for all £>0 and all f from a core D,, of M; M is called a
Lyapunov operator for a and the operator I" defined by
—a*la, f =d(a*Ma,) f/dt is called the corresponding
microscopic entropy production operator. For a conservative
Hamiltonian system the group « is determined by the corre-
sponding Liouville operator and the state space is construct-
ed in the usual fashion as introduced by Koopman.* For a
system with a time-dependent Hamiltonian this method can-
not be applied since there is no constant energy submanifold.
This has caused doubt® whether a statistical description
which goes along with the introduction of a state space
makes sense at all. We do not share this opinion since, even if
the energy is not a constant of motion, there are other con-
stants of motion which might specify suitable invariant man-
ifolds 3 with an appropriate measure g so that L *(3, u)is a
reasonable state space—at least for our purpose, meaning
that we can use its states and evolution operators with regard
to microscopic entropy and asymptotic stability properties.
We shall consider here two standard examples—the damped
linear oscillator and the forced harmonic oscillator (both in
one dimension)—to demonstrate that there are at least three
possible ways to construct a state space: The first one uses
the method of suspension* (i.e., the extended cotangent bun-
dle). In the second method the system is imbedded into a
larger conservative system. It turns out that both methods
(at least for our examples) are mathematically equivalent,
delivering the same state space and evolution operators and
differing only in an interpretation of parameters. In the third
and last method the system is mapped by a canonical trans-
formation on a conservative Hamiltonian system for which

* Dedicated to Bryce DeWitt on his sixtieth birthday.
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the state space is constructed in the Koopman fashion. Since
this canonical transformation is unitary in the state space,
the time evolution operators are unitary. However, although
the result is perhaps more satisfactory from a physical point
of view since no artificial parameters are used it has a handi-
cap: The evolution operators do not constitute a group
{whereas they do so in the first two methods); hence the spec-
trai criterium for the existence of an entropy production
mentioned above cannot be applied.

1. USING THE EXTENDED PHASE SPACE

Let T *(M )CR? be a cotangent bundle and let
H:T*M) X R—R be a time-dependent Hamilton function.
Let further 7 *(M, ) be the cotangent bundle of the extended
phase space and let*%’

H(q,p,E,t)=H(p,q,t)+E (= const) (1)

be the suspension of H ( p, g, t) so that the dynamical equa-
tions of (1) are

d_ R dE_ 4l

ds  dq  ds

ﬂzﬁ, ﬁzﬁ (2)
ds ot ds OE

From the last equation we obtain f = 7 - 5. Assume now
that x and K are constants of motion so that

qlt)=al; x,K), p(t)=>b(tx K). (3)

Since the volume on T*(M, ) is _
dp ANdENdgNdt = — dp Ndq Adt NdH, it follows® that

dpANdgANdt =D dxNdrA\dK,

p_dadb  dadb @

IK ox’

is an invariant measure of the flow of (1). As a first example
we consider the damped linear oscillator with a Hamilton
function®°®

H{p,q,t)=(e *p* +e“qg")/2 (5)

and solutions

glt) = (2K )"%e =%/ sin(wt + t,)

_ (2K )1/2e —k(s+ 772 sin(a)s + x)Eq(S], (63)
plt) = (2K)"2eX"? cosfwt + t, + 6)
—_ (2K )l/Zek {s+ 7)/2 COS(Q)S + x4+ 0 )Ejj(s), (6b)
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where 0> = 1 — k?/4>0 and 6 = arccos w. Thus D = w in
(4). As an invariant submanifold we choose now the one
specified by K = const so that our state space becomes
H=L*T"' X R,dx X dr)(withT 'denotingtheone-dimen-
sional torus and dx and dr denoting the Lebesgue measures
on 7' and R, respectively). The corresponding Liouville op-
erator is then L = — i{wd /dx + d /J7). Since id /d has an
absolutely continuous spectrum, we can expect a nonvanish-
ing microscopic entropy. Indeed, it has been shown® that the
shift on R determines a class of nontrivial Lyapunov opera-
tors (the point is that these Lyapunov operators are not clas-
sical observables meaning that they do not commute with all
classical observables'*?). The constant (2K )'/? which specifies
our invariant submanifold has an obvious physical meaning
namely that of an amplitude at a fixed time and phase x (thus
it can be related to the number of particles or quanta of an
ensemble). K appears also with an ergodic property of H ( p,
g, t) for one shows easily

T 27
}im [(I/T)f Hdt]:f Hdx =K. (7)
— 00 0 0

In Sec. I we shall show that K is, in addition, the energy of a
harmonic oscillator which is uniquely related to the damped
linear oscillator via a canonical map.

As a second example, we consider now the forced har-
monic oscillator with a Hamilton function®

H(p, g t)=(p"+q)/2+clt)g (8)
and solutions

g(t) = (2K)"?sin(t + x) + g, (¢),

ple)=(2K)" 2 coslt +x) +p,(t), Py =4,
where ¢, is a particular solution depending on c¢. It follows
D = — 1in (4). Assume first that ¢ is (smooth) periodic, say
mod w2 27. Then the (relevant) state space will be
H=L}T' X oT", dx X dr)and the evolution is given by
corresponding shifts on 7' and T *. The Liouville operator
has in this case a pure point spectrum so that we cannot
expect entropy production but rather stability (which seems
obvious from the assumed properties of ¢). Assume now that
¢ is not periodic but otherwise reasonable and defined on R
or R, [say, c(t)=e~']. Then we get a state space
H=L*T' X R, dx X dr)and the Liouville operator has
due to the shift of 7 on R a nonvoid absolutely continuous
spectral part. Hence we can expect entropy production
[which again seems obvious from the assumed properties of

c(t)].

9

Ii. EMBEDDING INTO A CONSERVATIVE SYSTEM

We can write the solution of the damped linear oscilla-
tor in the follow@g way: q = 0,0, p = PP, where
Qilt)=e "7 Oyft) = (2K )'"? sin(wr + x), P,(t) = "7,
P,(t) = (2K )"/? cos(wt + x + 6 ) belong to Hamilton func-
tions

H\(P,, Q,)= — kP,Q,/2 =const =k /2, (10a)
H,(P,, 0,)= (P2 + Q2 + kP,0,)/2=const =K.  (10b)
The transformation (él’ éz)—’(Ql = @1, O =q= F(é;, Q))
is canonical if the momenta are transformed according to
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P, =P, +pQ,, P, =p0, = pQ,. We get then
H(P. 0y p.0) = — kPLQ/2+(P°0} +°0 /2
=H,\(P,, Q)) + Hy(P,, Q) (11)

as the Hamilton function of a conservative system in which
the damped linear oscillator is a subsystem. Replace for the
sake of numerical simplicity in (10b) Q2 by w2 Q? and let
o= (w2 —k?/4)"? =k = 1. Letting now Q,(t) = e '+,
0.(t) = (2E,)"? sin(t + x,), where H, = E,, H, = E,,
H = E =E, + E,, we obtain the Koopman state space
H=LXR X T'X R,,dx, X dx, X dx,), x; = E,. Thus
our relevant state spaceis H = L (R X T',dx, X dx,)with
evolution operators which act as shifts on 7' and R. Hence
we have a nonvoid absolutely continuous spectral part for
the Liouville operator, so we can expect entropy production.
Looking back to Sec. I, we see that our state space and the
evolution operators are exactly those we obtained there, al-
though the parameters 7 and x, have a different meaning.
As to the forced harmonic oscillator, consider the Ham-
ilton function

H(p1, 41, P2 ) = (P1 + a1q1)/2 + (P + a:43)/2
—bp\py — 029195 (12)
where a,, a,, b,, b, are real constant. If we choose these

constants such that a,b, + b, =0 and a,(1 — b3) = |, then
we get the following equations of motion:

G +q,=byla, —a,lg,, (13a)
(13b})

That is, (13a) is a forced harmonic oscillator and a subsystem
of the conservative system which has a Hamilton function
(11). The special choices for the exterior force of this subsys-
tem which are provided by ¢, will be sufficient for our pur-
pose; they are: (i) b <0, (ii) 1 24 > 0. For (i) we may choose
then g,(t) = e ~""* =, and for (ii) we can let g,(t ) = sin(yb ¢
+ x,). This leads via the Koopman construction with re-
spectto(11)for(i)totherelevantstatespace H = LT "' X R,
dx, X dx,)andfor(ii)toH = LT"' x T',dx, X dx,),and
the evolution operators are in both cases the respective
shifts. For (i) this means a nonvoid and for (ii) an empty
absolutely continuous spectral part for the corresponding
Liouville operator. Thus we have obtained again the same
state space and evolution operators as in Sec. I.

Note that the matrix associated with the bilinear form
(11) is Hermitian so that we can find p,, g,, P>, g, such that
H(P, Oy, p,9)=H\(p\, q\) + H,p, 7).

In Appendix A we consider the field equations for a
spatially homogeneous scalar field with nonzero rest mass in
de Sitter space, the scalar field playing the part of a damped
linear oscillator as a subsystem of a closed Hamiltonian sys-
tem (scalar + gravitational field).

In Appendix B we give another example of a conserva-
tive Hamiltonian system not equivalent to (11), of which the
damped linear oscillator is a subsystem; the resulting Hilbert
state space, however, coincides with those of Secs. I and 1I.

4 +bg,=0, b=a,—abi.

{1l. MAPPING ON A FREE HARMONIC OSCILLATOR

Let ( p, g) belong to the damped linear oscillator and
consider the transformation
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(P, 9—(P: qiq(t) =e~"q(t), p(t)=e""plt). (14)
This is a canonical map provided

pdq— Hdt =pdg— H dt,

H(p,q) =P +§ + kpg)/2.
Evidently, (15) maps the damped linear oscillator (5) on a
harmonic oscillator with a Hamilton function which is given

in (15). Note that this transformation is generated by a Pois-
son bracket: If

(15)

Bt =ei167 5=(lk/2){ﬁq’ °}Poisson’ (16)
then one easily verifies
plt)=Bplt), qlt)=Bq(). (17)

Soifa, is the shift 5(0)—p(t ) = (@,p)(0), g(0)}—4(t ) = (@,4)(0),
it follows that, with an initial condition p(0) = p(0),
¢(0) = g(0), the time evolution operators for the damped lin-
ear oscillator are ¢, =@, B,, t € R. Since @, and 3, do not
commute (unless ¢ = 0), the @, do not form a group. How-
ever, they are unitary in the state space which we can con-
struct as the Koopman space H for the Hamilton function
H(p,q) = (P> + @ + kpg)/2 = const = E. Proceeding in
the usual fashion, weobtain H = L *(T'!, dx), where x refers to
git) = (2E)"? sin(wt + x),
pit)=(E)"?cos(wt + x + 0), 6= arccos w.
To show that the @, are unitary, it suffices to prove that § as
given by (16} is s. a. in H. Now, a short calculation yields

(—i8f)x)= o —AX]f'x), feC'0,2m), (19)
where
A(x) = o[l — (k /2) sin{2x + O)][1 + (k /2)* sin’x] "

ll()

(18)

Since A is evidently real bounded and periodic (mod27), al
maximal extensions of § are s. a. with domain D;

= { fe C'(0,27)| f(0) = zf(27m)}, |z| = 1 (weletz = 1sothat
Dy is aset of single-valued functions). This proves the unitar-
ity of the a, in H. The strong derivative of @, with respectto?
is, by the way, the time-dependent Liouville operator L asso-
ciated with the Hamilton function (5). In the state space H it
is given by

(—iLf)x) =4 (x).f"(x). (20)

By the same arguments that were used to prove that § iss. a.,
it can be shown that L is s. a., having the same domain as §. It
is easy to show (confirming thus a general theorem proven in
Ref. 2) that there is no Lyapunov operator M which is a
multiplication function {that is, M is not a classical observa-
ble). For assume the contrary to be true; i.e., let

(Mf)(x) = m(x) f(x). Then it follows from the Lyapunov con-
ditions (L1) and {L2) above that

— {(Lm)(x) = A (x)m’(x) = $(x)>0, (21)

where m > 0 must be single-valued. Consequently,
27
0= m(27) — m(0) = J A (%)™ y(x) dx, (22)
0

from which it follows ¥ = 0 a.e.; hence there is no entropy
production.

The forced harmonic oscillator can be treated in a simi-
lar way. Let its Hamilton function be given by (8), and let ¢
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and p be solutions of the corresponding free harmonic oscil-
lator. Consider the map

§—9=9+ 4y, PoP=DP+Psr Py =4u (23)
where g and p are the solutions given in (9). It is easy to show
that (23) is, too, generated by a Poisson bracket, namely
{ = Pu@ + 9.P>} poisson - Proceeding similarly as above, we
find that [for suitable functions ¢ in (8)] the time evolution
operators are unitary in the Koopman state space associated
with the harmonic oscillator but do not constitute a group.
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APPENDIX A

As a physically relevant example in which a damped
linear oscillator appears as a subsystem of a conservative
Hamiltonian system, we consider a scalar field with a non-
zero rest mass coupled to a gravitational field, the scalar field
playing the part of the oscillator. Assume that we have (in a
four-dimensional space~time manifold) a Robertson-Walk-
ermetricds’ = —dt?> + S?do?, S=S(t). Let ¢ be a scalar
field depending on time only which is coupled to the gravita-
tional field represented by .S. The Einstein field equations are
then'' (the dot denotes differentation with respect to ¢ )

(a) E=const= —S?+ (4w/3)SH s> + 0’¢?),
(b) ¢ +3(5/5)p + w?é=0.
If we substitute dr—S ~ 'dr and introduce
q,=S8% p,=85/4, q,=(87/3)" "¢,
P, = (87/3)' 12849,

then Eqgs. (a) and (b) are equivalent to a Hamiltonian system
with a Hamilton function

(x) H(p1,quPy )= —pi + (41 °p; +0’q1q2)/2,
that is, g, is a scalar field with a rest mass w coupled to a
gravitational field ¢, in a metricds®> = — g, ' dt* + ¢, do?,
where do” represents a spatial 3-sphere whose curvature E is
given by the values of the level set of H, i.e., H = const = E.
We let it suffice to remark that from the structure of the
Hamilton function () one can conjecture the associated
Liouville operator to have absolutely continuous parts in its
spectrum; hence one can expect microscopic entropy pro-
duction and thus asymptotic stability.

APPENDIX B

The Hamiltonian (11) in which the damped linear oscil-
lator appeared as a subsystem is not the only one which has
this property. For example, the Hamilton function
H(p\,q9::p2 9)

=pw, + 3k (p1g1 — P2g2) + 0°q,q;, @ =1-— k?/4,
which stems from the Morse—Feshbach Lagrangian (see Ref.

8) and where g, is the coordinate function of the damped
linear oscillator (5) (g, is the coordinate function of the same
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linear oscillator but with a negative damping — k), serves
the same purpose. Its solutions are
g,(t) = Ce ¥+ 2 sin(wt + x,),
@) pat) = Ce**+ 7+ 2 cos(wt + x),
g,(t) = Ce** + " sin(wt + x,),
pilt) = Ce %"+ 7 cos(wt + x,),
{c) @C?coslx; —x;, —0)=H

(b)

= const, & = arccos .

In order that H>0 and C be real, we let x, = x, and

C = const real. It is no difficulty to see from (a) and (b) that
one obtains then the same state space as in Secs. I and II,
namely L (T"' X R,dx, X d7)and the same evolution oper-
ators (which are shifts on 7! and R). The nonequivalence of
the Morse—-Feshbach Hamiltonian and (11) follows from the
different spectra of the matrices corresponding to their bilin-
ear forms,

APPENDIX C

We have considered in detail so far only two examples
of linear systems. Therefore, we would like to outline briefly
a nonlinear example, namely that of a damped anharmonic
oscillator ¢ + k¢ + V'(q) = O, which has a (time-dependent)
Hamilton function H ( p,q,t) = e ~ *p*/2 4 "'V (q). If we let
V(g) = aq’/2 + ¢" " '(n + 1), where
a = 2k?n + 1)(n + 3) 2 theng(t) = e ~*vle ~#)wherevisa
solution of B%" +v"=0and B=b(n — 1)/2,

b =2k (n + 3)7 . Let, in particular, k = n = 3 so that
B = b = 1= 2a. The substitution e ~ ‘—t, p—p, g—q is a ca-
nonical transformation if H— — ¢*p*/2 — t ~*V (g) [where
Viq) = ¢* + ¢*/4]. Our solution becomes then
q(t) = Ct cn(Ct + x), where C = real const and cn=cosinus
amplitudinis (mod 1/v2). We can repeat now all the con-
structions of Secs. I and I1. As to Sec. I, this is obvious from
the general scheme we have provided there. As to Sec. II it
suffices to note that we have a factorization ¢ = §,g,, where
q, and g q2 belong to systems with Hamilton functions
=p?/2and H, = p%/2 + g2 /4, respectively. Hence we
can copy the above given construction. Again, we get as the
(relevant) state space L (@T "' X R) and evolution operators
which are the respective shifts. The Morse-Feshbach Ha-
miltonian in Appendix B can, by the way, be generalized so
as to include the damped anharmonic oscillator, for if ¢,
denotes its coordinate function, then one checks easily that

H(p1,91,9:) =pp: + apg, — B pag, + 9,F (g,) yieldsforg,
the following equation of motion:

G, +(a+B)g, +aBq, + Flq,) =0,
that is,

V'ig,) = a Bg, + Flg,).

APPENDIX D

Although we are not concerned here with quantization
problems, we would like to point out a somewhat strange
result concerning these problems. Let us both in the (proper-
ly symmetrized) quantum mechanical Hamiltonian corre-
sponding to (11) {case A) and the Morse—Feshbach type (case
B} for the damped linear oscillator assume, as usual, ‘
I[P, Q] =6yland [P, P,] =[Q;, 0] =0,andlet Q,
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=d(Q,/dt (strongly). Omitting all finesse concerning do-
mains of operators, it follows then that

i[Qu(t), Qi(r)] = i[Qy(t), Qalt)] =0,

iQit), Qilt)] = Q1(t) = e~ “Q3(0);

[Qi(t), @i(t)] = [Qale), Golr)] =0,

i[Q\(t), Qolt)] = — Kk L.

If we use the construction of Sec. II1, that is, if we let

P(r) = exp(itd )i JP(t), Q(t) = explitd O (t), where 6 =

kad (P Q + Q P)[cf.(16)] and the couple (P, 0 )belongs to the

harmomc oscillator in (15), then it follows that i[P, Q] = i[P,
Q1=1and{Q(r), Q(t)] = e *1. The last equation falls

with respect to the commutator of Q,(¢ ) and Q,(t) at least

qualitatively in line with case A, although both results con-

tradict arguments raised in Ref. 12. By the way, the example

considered in Appendix A (a scalar field ¢, coupled to a

gravitational field with a metric ds” = g, ' dt* + ¢} do?)

would (properly quantized) lead to i{[Q,,0,1/2 = — 1,

(05,01 = @ % and i[Q,,0,] = 4P,Q ; * so that, in parti-

cular, the second commutator equation agrees due to the

expected asymptotic properties of Q, (expanding universe)

qualitatively with the corresponding one in case (A).

(A)

(B)

APPENDIX E

So far we have considered the example of the damped
linear oscillator, § + k¢ + g = O, either as derived from a
time-dependent Hamiltonian or as part of a larger conserva-
tive system. However, this equation can also be derived from
a time-independent (one-dimensional) Hamiltonian (cf. Ref.
13):

H= —kpq/2 —In[cos(wpq)] +Inq, «?®=1—k?/4.

To see what the state space corresponding to H = const
looks like let g(t) = Ce ~*!*+ ™2 cos[w(t + 7)] be the general
solution with constants of motion re R, Ce R, . Then a
short calculation yields A = In C. The volume element in
phase space is

dp N dg=dH N dq/[ — (kq/2)
+ wq tan{wpq)] = dH A dq/q.

Hence the invariant measure on the submanifold specified
by H =1In C = const is dg/§ = — w dr, where dr is the
Lebesque measure on R. Thus our state space is H = L 4R)
and the Liouville operatoris L = - id /dr. Consequently, L
has an absolutely continuous spectrum, so we can expect
asymptotic Lyapunov stability in H. Comparing this with
the above result, where the state space was
H=L*T"'X Rj~L¥T") & L?R), we see that H is
actually the restriction of H to that factor (subsystem), name-
ly L *(R), on which dynamics (i.e., the shift z—¢ + 7) provides
us already with the premises which guarantee asymptotic
stability. The reason why H and H do not coincide is due to
our choice of the corresponding constants of motion: For H
wehadletg(t) = (2K )!/%e = 2 cos[w(t + 7)),0T =ty + 7/2
{cf. Sec. I), where the invariant submanifold X was specified
by K = const. In the here considered example we had let
g(t) = Ce *"+ 72 cos[w(t + 7)] and I specified by

=In C = const, thusd (In C) = dK + K dr.
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Symplectic approach to nonconservative mechanics
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The dynamics of autonomous nonconservative systems is studied in terms of Lagrangian
submanifolds of a special symplectic manifold. Both the Hamiltonian and Lagrangian description
are taken into consideration and the transition between the two descriptions is established by
means of the generating function of a symplectic relation.

PACS numbers: 03.20. + i, 02.40.5f, 02.30.Jr

1. INTRODUCTION

In several papers,” Tulczyjew has developed a new sym-
plectic formulation of particle dynamics which also has an
interesting extension to field dynamics.? His approach,
which differs from the standard symplectic treatments of
mechanics,’ applies to nonrelativistic as well as relativistic
systems and allows a more uniform treatment of Hamilton-
ian and Lagrangian dynamics. Considering, for instance, the
case of a conservative nonrelativistic particle system, we can
sketch the main idea as follows. Let M be a C ~-differentia-
ble manifold with cotangent bundle 7 *M and tangent bun-
dle TM (the phase space and state space of the system). The
canonical symplectic form on 7" *M induces a symplectic
form on TT *M which corresponds to two different special
symplectic structures,' associated with the fibrations
TT*M—T*Mand TT *M—TM, respectively. It then turns
out that the tangent vectors to the phase space trajectories of
the system constitute a Lagrangian submanifold of 77 *M
(this is sometimes called the “reciprocity property of particle
dynamics”'). According to whether one regards this Lagran-
gian submanifold as being (locally) generated with respect to
the first special symplectic structure by a function H defined
on T *M, or with respect to the second one by a function L
defined on TM, one recovers the Hamilton or Lagrange
equations of motion, respectively. The transition between
the two descriptions is effectuated by a Legendre transfor-
mation which can be characterized by means of the generat-
ing function of a symplectic relation, namely, the graph of
the identity transformation of 77 *M (see, e.g., Ref. 4).

The purpose of the present paper is to construct a simi-
lar symplectic scheme for autonomous systems which can be
described by equations of the form

¢=, =%y, (n
p; aq
for some smooth functions H and Q; on 7 *M. In particular,
this includes the phase space description of classical me-
chanical systems with forces not derivable from a potential®
(friction forces, gyroscopic forces, --). We will therefore refer
to systems of type (1) as nonconservative systems.

Since our analysis will primarily be based on Refs. 1 and
4, we first recall in the next section some definitions and

® Research associate at the National Fund for Scientific Research, Belgium.
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properties from these papers. Starting from a geometric
characterization of a nonconservative system, it will be seen
in Sec. 3 that the dynamics of such a system defines a La-
grangian submanifold of 77 *M with respect to a particular
symplectic form. In Sec. 4 we then show that this symplectic
form corresponds to two special symplectic structures in
such a way that the description of a Lagrangian submanifold
of TT *M in terms of one of these structures produces the
phase space equations (1) of a nonconservative system,
whereas the description in terms of the other structure yields
a second-order system

2(%%)-L-5 @
dt \ d¢' dq'

for some smooth functions L and Q. on TM. The latter equa-
tions agree with the general form of the equations of motion
in state space of a nonconservative mechanical system.” The
transition between the two descriptions by means of a Le-
gendre transformation will be briefly discussed in Sec. 5.
Finally, in Sec. 6 we conclude with some general remarks
and indicate, as an illustration, how any dynamical system
on T *M can be lifted to a Hamiltonian system on 77 *M
within the present symplectic framework.

For definitions and properties from symplectic geome-
try we refer, e.g., to Abraham and Marsden,’ and Wein-
stein.® The notations we adopt are mainly those of Ref. 3.
For any manifold P, the natural projections from the cotan-
gent bundle and the tangent bundle onto P will be denoted by
7p: T *P—P and 7p: TP—P, respectively. The canonical 1-
form on T *P will be denoted by 8, and the corresponding
symplectic form by w, (i.e., 8, = p,dq’ and w, = d6,). All
mappings, vector fields, and differential forms are assumed
to be of class C .

2. PRELIMINARIES

For a detailed description of the concepts and for a
proof of the properties mentioned in this section, we refer to
the papers of Refs. 1 and 4.

Definition 2.1: A special symplectic manifold is a collec-
tion (P, Q, 7, 0, y) where P, Q are differentiable manifolds, :
P—Qadifferential fibration, #a 1-formon P, and y: P—~T *Q
a diffeomorphism such that 7,0y =7 and y *6, = 6.

In particular, it follows from this definition that (P,d@ )
is a symplectic manifold: the underlying symplectic manifold
of the special symplectic structure (P, Q, 7, 6, y).

Property 2.1: If (P, Q, 7, 6, y) is a special symplectic
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manifold, K a submanifold of Q, and fa smooth function on
K, then’

N = { pePr{p)eK, (u,0(p)) = (Tm{u)df (=( p)))
for all ueT,P with Tm(u)eT, K}

is a Lagrangian submanifold of (P, d6). (See, e.g., Ref. 4 or
also, for a more general discussion, Ref. 8.) N is called the
Lagrangian submanifold generated by f.

Property 2.2: If (P, Q;, 7;, 6,, y;) for i = 1, 2 are two
special symplectic manifolds, then (P, X P,, @, X @y, m, X 74,
6,90, v,,) is a special symplectic manifold, with
6,00, = pr*0, — pr¥é,; pr;: P, X P,—P, the natural projec-
tions; y,,: Py X Pi—T* @, X Q)), ( P2 p1}—{x2( £2)s

—xipi)
Let P be a differentiable manifold and denote the grad-

ed algebras of differential forms on Pand on 7Pby £2 (P) and
{2 (TP), respectively. One can then introduce two particular
derivation operators /- and D from £2 (P ) into {2 (TP ) as fol-
lows."*

Let f be a smooth function and & a 1-form, both defined
on P. Put I.f = 0 and define /-« as a function on TP by
Ia(x) = (x,a(rp(x))) for each xeTP. Since derivations are
completely determined by their action on functions and 1-
forms, it follows that I, can be extended to a derivation of
degree — 1from{2 (P)intof2 (TP). AderivationofdegreeQis
obtained by putting D, = I,.d +dl;.

If P = T *M forsome differentiable manifold M, denote
the natural bundle coordinates on Pand TP (= TT*M ) by
(¢, p.) and (¢', p.,4', p.), respectively. We then have

Irwy = p:dq’ — §'dp,, (3)

D60, =p:dq +pdq. (4)
It can be verified that the 2-form dl,;w,, (=dD;0,)is a
symplectic form on 77 *M.

As is well known, on the second tangent bundle T7TP

there exists a canonical involution s, which, in terms of nat-
ural bundle coordinates (¢, ¢, u’, v') is given by’
SP(qivqi’uirvi) = (qi’ui’qi’vi)' ()
The following properties of s, are immediately verified:
Trp08p =Trp. (6

5pOosp = lyrp, TrpOSp=T7p,

We finally mention a property which, when properly
extended, leads to an equivalent characterization of the deri-
vation operator D (cf. the second paper of Ref. 1). Let
aef? '(P)and ye TTP be given. Suppose ¢: R—TP is an inte-
gral curve (or representative) of sp(y), i.e., ¢ (0) = Trp(sp(¥))
and T¢ (0,1) = sp{y}). Then

0.Dra) =2 (3.2)0), 5
dt
where {ha) {1 }=(& (¢ hex(rn(d (£ )

3. NONCONSERVATIVE SYSTEMS AND LAGRANGIAN
SUBMANIFOLDS

Let M be a C “-differentiable manifold (dimension #)
and u a nonclosed horizontal 1-form on T*M, i.e., du#0
and in local canonical coordinates

u=Qdq (8)
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for some smooth functions @; = Q,(g,p).

Given any function HeC =(T *M ), we adopt the follow-
ing definition:

Definition 3.1: The nonconservative system associated
with the pair (2, H ) is the unique vector field Ae Z° (T *M ) for
which

laoy = —dH +p. (9)

Expressing (9) in terms of local coordinates, using (8)
and the expression w,, = dp; Adg, it is seen that the differ-
ential equations associated with 4 are of the form (1). Clear-
ly, any other pair (', H ') consisting of a horizontal 1-form g’
and a smooth function H ’ will define the same nonconserva-
tive system iff there exists a function f€C *(M ) such that
w =p+d{foryjand H' = H + for,,. This freedomin the
characterization of a nonconservative system in terms of a
pair (., H ) will have no influence on the subsequent analysis.
It will therefore always be tacitly assumed that a fixed choice
for 4 has been made. The function A will then be called the
Hamiltonian of the nonconservative system. Before proceed-
ing, a few remarks are in order here.

It is clear from the previous considerations that we re-
strict ourselves to systems having a globally defined Hamil-
tonian. Alternatively, we could have defined a nonconserva-
tive system as any vector field 4 for which

Lywy =du (10)

for some horizontal 1-form y (where L, denotes the Lie deri-
vative with respect to 4 ). Obviously, (9) implies (10) whereas,
in general, the converse only holds locally. The requirement
of 1 being nonclosed is added to exclude the possibility that
A trivially becomes a (local) Hamiltonian vector field.

Finally, the reason for taking u to be horizontal is main-
ly based on the following two arguments. First of all, as men-
tioned above, this condition naturally leads to the phase
space form of the equations of motion of a nonconservative
mechanical system. The functions Q,; in (8) can then be inter-
preted as the phase space components of the (generalized)
forces which are not derivable from a potential. Secondly, as
will be seen in the next section, horizontality of g is an im-
portant assumption with a view on the transition to the state
space (or Lagrangian) description of nonconservative sys-
tems. Nevertheless, as far as the phase space portrait is con-
cerned, much of the sequel holds equally well when starting
from a general 1-form ¢ on T *M. In particular, this would
give rise to a more symmetric form of the equations of mo-
tion, with an additional term appearing on the right-hand
side of the ¢--equations in (1). The passage from (9), with u
horizontal, to this more general situation can be established
by means of an arbitrary symplectic transformation.’®

We now turn to the characterizaiton of a nonconserva-
tive system, associated with a given g, in terms of a Lagran-
gian submanifold of 77" * M with respect to a particular sym-
plectic structure. By means of ¢ and the canonical
symplectic form w,,, we define the following 1-form on
TT*M:

0o = 11wy — TTepfh (11)

In terms of the natural coordinates (¢, p;, ¢, p;) on TT*M
and using (3), the local expression for 8, becomes
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0o = (p; — Q:)dg' — ¢'dp,. (12)

In the first paper of Ref. 1 it has been shown that I;.0,,
= *0y.p, WhereS: TT *M—T *T *Misthebundleisomor-
phism defined by

B(x) = i, @y (Trep(x)) (13)
for every xeTT *M. Hence, 6, can also be written as
Oy =B%0rp — TFepslt- (14)

One immediately verifies that the 2-form w, = d6, is a
symplectic form on T7T *M. Regarding a vector field 4 on
T *M as a smooth section of 77T *M, i.e., 4: T*M—-TT*M
and 7,.,,°4 = 1.4, we get the following result [which is
intuitively trivial on the local expression (12)].

Proposition 3.1: A vector field Ae Z°(T*M ) defines a
nonconservative system, associated with u, iff

A*0y= —dH (15)

for some function HeC *(T *M ).
Proof: Using (14) we find

A*6y = (BoA)*Opupy — (Trepod J*p
= (B4 )*0rupy — p-

Taking account of the property'' (804 )*€;.,, = o4
and the definition (13} of 5, this can be rewritten as

A*0, =i 0p — 1, (16)
from which the result follows in view of Definition 3.1. W

Denoting the image set of 4 in 77 *M by Im 4, the
previous proposition immediately yields the following corol-
lary.

Corollary 3.2: If A is a nonconservative system, defined
by (9) for some smooth function H, then Im A4 is a Lagran-
gian submanifold of (77T *M, w,).

Proof: Im A is a submanifold of 77" *M with dim(Im A )

= 1dim(7T *M ) and, moreover, from (15) we get4 *w, = 0,
1e., Wy|yma =0 |

The converse of this corollary holds if, instead of (9), we
consider the relation (10). More precisely we have:

Proposition 3.3: Given 4 2°(T*M ), thenIm 4 is a La-
grangian submanifold of (T7 *M, w,} if and only if L, w,,

=dy [i.e., if and only if (9) holds locally].

Proof: The proof follows immediately from the observa-
tion that (16) implies 4 *o, = L, w,, — du. ]

In the next section, it will be shown that (TT *M, w,) is
the underlying symplectic manifold of two special symplec-
tic structures, associated with the fibrations 7,.,,:
TT*M—T*M and T7,,: TT *M—TM, respectively. This
will enable us to recover both the phase space and the state
space description of a nonconservative system from the iden-
tification of a suitable Lagrangian submanifold of (77 *M,
wp)-

4. SPECIAL SYMPLECTIC STRUCTURES
We first introduce the following mapping;:
y:IT*M—-T*T*M
X=X (X) = L, 0p(Trepg (X)) — p(T rape(x)).

Since w,, is nondegenerate, y is clearly a bundle isomor-
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phism and so, in particular, a diffeomorphism. In local co-
ordinates, using the expression (8) for 2, we have

X(qi,P;,l'Ii»Pi) = (qi’pi’pi - Qi’ - q:) (17)

Comparing the definition of y with (13}, it is seen that
¥ =B — uorr.,,. Consequently, it follows that

X*Orepy =B *Orupy — THers(@0*Orep).
Using the fact that'' u*6,.,, = u, and taking into account
(14), we get

X*Orer = 60
Moreover, the definition of y immediately implies that
Treas O = Trepe [Which can also be seen from (17)]. We may
therefore conclude that the collection (TT*M, T*M, 71.,,,
6y, y) satisfies all the requirements of Definition 2.1 and,
hence, we have:

Proposition 4.1: (TT*M, T*M, 1,.,,, 8, x) iIs a special
symplectic manifold with underlying symplectic manifold
(TT *M, w). [ ]

Given HeC =(T *M ), the Lagrangian submanifold of
(TT*M, w,) generated with respect to the special symplectic
structure (77 *M, T*M, T 1.y, 6y, Y) by — H, is locally de-
scribed by

(P, — Qi)dq' — ¢dp, = —dH (g, p). (18)
[See Property 2.1 and the expression (12) for 6,.]

From (18) one derives the phase space equations of mo-
tion (1} of a nonconservative system.

We now proceed towards the construction of a second
special symplectic manifold corresponding to the same un-
derlying symplectic manifold (77 *M, «,). The whole argu-
ment is inspired by and is an immediate extension of Tulczy-

jew’s symplectic approach of Lagrangian dynamics.'
For xeTT *M and yeTTM, with

Trar (V) = Ty (x), (19)
let y: R—7M and x: R—T *M be integral curves of s, ( y) and
x, respectively, with s,, the involution operator on TTM (see
Sec. 2}, and where

Ta OY = Tpr OK. (20)
In particular, one may then consider the function
(v (8 )=(y(t )k(t )). We now construct a mapping ¥:
TT*M—T *TM by the following prescription:

3.9 (x)) = "t (PRI 0) = (Za{T pepg () 1)

d
for all ye TTM satisfying (19) and where ze TT * M is such that
Treml(2) =T (x) and Ty (z) = (0). (22)
In order to see that (21) makes sense and, as such, de-
fines ¥ (x) unambiguously, we first notice that the first term
on the right-hand side is independent of the chosen represen-
tatives (i.e., integral curves) ¥ and « of s,,( y) and x, for which
(20) holds. Secondly, we must prove that the right-hand side
of (21} is also independent of the choice made for z, provided
(22) is satisfied. For that purpose it suffices to show that
(Zp(T7.0(x))) = O whenever T'm,,(Z) = 0. For brevity, put
TreplX) = a. Choose zeT, (T *M ) with T, (Z) = 0. Since
4 is horizontal, one can always find a suitable 1-form v on M
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such that u(a) = (7%v)(a), at the given point a. Hence,

(2,/1((1)) = (21(711‘41/)(‘1))
= Ty @) vimpyla)) =0,
which gives the desired result.
Expressing (21) in local coordinates, using (8) and tak-
ing account of (19), (20), and (22), one can verify that ¥ is
locally given by

W(qi’pi’qi’pi) = (qi’qi’pi - Qi’ Pz) (23)
Next, we introduce the following 1-form on 7T *M:
90 =D10y — THept. (24)

From the definition of the derivation operator D and (11),
this can be rewritten as

6,=06,+dl;6,. (25)

We now have the following result.

Proposition 4.2: (TT *M, TM, Tm,,, 0,, ¥) is a special
symplectic manifold with underlying symplectic manifold
(TT*M, w,).

Proof: By means of (21) and (23) one readily verifies that
¥ is a bijective local diffeomorphism and, hence, a diffeo-
morphism. From the construction of ¥ it also follows that

T oW = Ty, (26)
Let we7TT *M and recall that 6, denotes the canonical 1-
form on T*TM.

For simplicity, we omit in the subsequent computations
the indication of the base point at which the inner products
are taken. We then have

<waW*9TM )= (Tw(w))eTM)s
or, using the definition of the canonical 1-form,"’

(W, ¥ *0rps) = (T 10 O T W) T e pag (TE (w)))

= AT (a0 N0 W (T rraps (W)
Taking account of (26) we finally obtain
(W, ¥ *6rpg) = (TT (W), ¥ (T 770 (W) (27)

for all weTTT *M.
Before proceeding we first mention the following rela-
tions:

Ty O T Ty = Ty 0T 1a g, (28a)
TTmy 0 pupy = Sy 0T Ty, (28b)
TT rapgOSrens = Trpens- (28c)

These relations are most easily verified in local coordinates.
For instance, denoting the natural coordinates on 777 *M
by (‘1,17, iLP» u, i, v, E) we have TTT'M(q!P’ %[% u, i, v, ﬁ) = (q,
D, 4, p). On the other hand, taking account of (5), we get
(TrrepOSrep)l@r P> @ P> 1, U, 0,0) = TTrep (g, Py 1, 1, G, P, 0,
7) = (g, p, 4, p), by which (28c) is verified. The proof of (28a)
and (28b) is completely similar.

Given weTTT *M, put X = Ty (W)ETT *M and
y = TTrm,, (w)eTTM. Using (28a) it is seen that

Traa( ¥) = (T3 OT rpeps J(W)
and, hence, (19) is satisfied. By (28b) we also have
Spr( V) = TTpg(S7epe (W) (29)

Now, let {: R—TT *M be an integral curve of s7.,,(w),
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i.e, 75 {0, 1) = s1up, (w). Putting y = Ty, 08, we find
Ty(0,1) = (TTmy,°T% )(0,1),
= TTmp(sren(W)),
and so, by (29),

TY(0,1) = sy ( p).
This shows that ¥ is an integral curve of s,,( y). Analogously,
putting « = 7;.,,°¢ and using (28c), one can verify that « is
an integral curve of x, and, moreover, ¥ and « satisfy (20).
Returning to (27) and taking account of (21), we then get

d
- K 0 — \Z, 30
0 (7:x)(0) — {z,u) (30)
for any zeTT *M satisfying (22). Since 7(0) = (772, OSar N V)s
successive application of (29), (28a), and (28c) gives

(w,W*GTM) =

V(0) = (T p O T 12y OS upg OS o W)

Recalling that s;.,, is an involution operator [see the first
relation of (6)], we find

NO) = (Tmp 0 TT 75 )W),

from which it follows that z = T7,.,,(w) satisfies (22). With
this choice for z and replacing y and « by T'r,, ¢ and
T 6, TESPECtively, (30) becomes

(0,9 *0,) = % (41O Tng O )O) — (T porg whtt),

— 2 (£0,)(0) = (it est),
where again use has been made of the definition of 8,,.'' By
(7) we finally obtain
(0, W *0 1y ) = (w,D764) — (W,TFupst)
or, with (24),
(0, *0 1) = {w,0,).
Since this relation holds for all weTTT *M, it follows that

Y*0ry = é()-
Equation (25) finally shows that d8, = df, = w,, which
completes the proof. ; ]
With (4} and (8), the local expression for 8, becomes
b, = (p; — Q,)dq' + p.dq" (31)

Now let NV be a Lagrangian submanifold of (T7 *M, w,)
which, in the sense of Property 2.1, is generated by a function
LeC ~(TM ) with respect to the special symplectic structure
(TT*M, TM, Tm,,, 8,, ¥). Using (31), N is then locally de-
scribed by

B — Qi)dqi +P1d?i =dL,
which is equivalent to

= él; , pi= §£ + 0.
aq dq'

This clearly leads to the state space equations (2) of a noncon-
servative system, with Q,(g, §)=Q.(g, L /3g).

Summarizing, the dynamics of a nonconservative sys-
tem defined by (9) is characterized by a Lagrangian submani-
fold of (TT *M, w,), which is generated with respect to
(TT*M, T *M, 71.p, 6, x) by the function — H. If this La-

D;
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grangian submanifold can moreover be generated with re-
spectto (TT *M, TM, Trry,, B,, ¥ )by afunction LeC =(TM ),
we find an equivalent state space description for the given
system. Of course, the existence of such a (globally defined)
Lagrangian depends on certain regularity conditions, but it
is not our intention to go further into this matter here.

In the next section we will see how the transition
between the two descriptions of a nonconservative system
can be formulated in terms of a Legendre transformation.

5. THE LEGENDRE TRANSFORMATION

This section is a straightforward application of the gen-
eral theory of Legendre transformations as developed by
Tulczyjew.* We therefore omit the details.

For convenience, we first recall some definitions from
Ref. 4. Suppose (P,w) is the underlying symplectic manifold
of two special symplectic manifolds (P, @,, 7|, 6,, y,) and (P,
Qs 3, 03, X2)-

Definition 5.1: The transition from the description of a
Lagrangian submanifold of (P, w) in terms of a generating
function with respect to (P, Q,, 7, 6,, y,) to the description
in terms of a generating function with respect to (P, Q,, 7,
6,, x-) is called the Legendre transformation from (P, Q,, m,,
0), x,)to (P, Q,, 15, 6,, ¥,). The identity transformationl, of
P being a symplectic transformation, its graph is a Lagran-
gian submanifold of (P X P, #©w), with 0Sw = pr¥w

— pr¥*w.>® (For a mapping ¢: P—P, graph ¢ is here defined
as [ (¢ ( p), p):peP }.) According to Property 2.2, we also have
that (P X P, wOw) is the underlying symplectic manifold of
the special symplectic manifold (P X P, @, X Q,, 7, X,
6,90, x21)-

Definition 5.2: The generating function E,, of graph 1,,
with respect to (P X P, Q, X Q,, 7, X, 6,06, Y1) is called
the generating function of the Legendre transformation
from (P7 Q17 s 61: Xl) to (P’ Q2' T2, 02’ Xz)

We now apply this to the situation described in the pre-
vious section. As we have shown, (77T *M, w,) is the underly-
ing symplectic manifold of the two special symplectic mani-
folds (TT*M, T*M, 1.y, 8o, y) and (TT *M, TM, Ty, 6,,
V). Again, using Property 2.2, it follows that
(TT*M X TT*M,TM X T*M, T'r, XTruprs» 050, P )isa
special symplectic manifold with @ (x, x') = (¥ (x), — y(x)).
Let E' denote the generating function of graph 1 ;7.,, with
respect to this special symplectic structure. By Definition
5.2, E' is then the generating function of the Legendre trans-
formation from (TT*M, T*M, 7.y, 6, x) to (TT *M, TM,
Ty, B, W), i.e., from the phase space to the state space
description of 2 nonconservative system associated with g.
The next proposition shows that £’ is independent of 1 and,
in fact, coincides with the generating function of the inverse
Legendre transformation of particle dynamics.*

Proposition 5.1: E ' is defined on the Whitney sum'2
TM X ,, T*M by

E'va) = (va). (32)
Proof:LetS: TT *M—TT *M X TT *M denotethediag-

onal mapping, i.e., § (x) = (x,x). We then have, using (11) and
(24),
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5*(90900) = D70, — Foutt — Lroy + TF ot

=dI.6,,.
The remainder of the proof is now completely similar to the
proof of Proposition 6.1 in Ref. 4. ]

Let H be a smooth function on 7 *3 and let N be the
Lagrangian submanifold of (TT *M, w,), which is generated
with respect to (TT *M, T*M, 7., 6,, y) by — H.

Under suitable assumptions® it-can be shown that a gen-
erating function of N with respect to (T7T *M, TM, Tr,,, 90,
¥) will be given by

L (v) = Stat,, [E'(v,a) — H (a)], (33)
where, following the notation of Ref. 4, Stat,,, indicates that
for each v the function E '(v,") — H (-) is evaluated at a critical

point a. It is clear that, in general, the function L will only be
defined on a submanifold of TM.

In local coordinates, with v = (¢,4) and & = (g, p), we
recover from (33) and (32) the well-known relationship
between the Hamiltonian and the Lagrangian, namely,

Lig.9) = ¢p.(9.9) — H (g, P(g,9));
where the functions p,(g,§) are obtained by solving the rela-
tions

=4

ap;
with respect to the momenta.

Similarly, it can be shown that the Legendre transfor-
mation from (TT*M, TM, Tr,,, 8,, ¥) to (TT*M, T*M,
Trea» B0, Y) i generated by the function E which is defined
on the Whitney sum 7'*M X ,,TM by

Elap) = — (va),

and the transition from a given Lagrangian L to a corre-
sponding Hamiltonian A then reads

H(a)= — Stat,, [E{a,v) + L (v)].

6. CONCLUSIONS

Inspired by Tulczyjew’s symplectic treatment of parti-
cle dynamics, we have constructed a symplectic framework
for the description of nonconservative dynamical systems
defined by (9). Some additional remarks are in order.

First, it should be emphasized that the symplectic
structure we have introduced on 7T *M depends on the giv-
en horizontal 1-form u (or, more precisely, on du). Hence, to
the extent that « can be interpreted in practical applications
as the representative of forces which are not derivable from a
potential, the symplectic form w, will also depend on these
forces.

Secondly, although we have always confined ourselves
to systems having a globally defined Hamiltonian, it is clear
that the above treatment immediately extends to systems
whose dynamics can be characterized by a Lagrangian sub-
manifold of (TT *M, w,), which is generated by a function
defined on a submanifold of T *M.

It is a well-known property that by doubling the degrees
of freedom any dynamical system can be cast into Hamilton-
ian form. We finally want to illustrate that an analogous
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property can be formulated within the present framework.
More precisely, we will show how the special symplectic
structure (77T *M, T'*M, 7.,,, 6,, y) can be used to lift any
vector field on T *M, and thus also, in particular, the vector
field A defined by (9), to a global Hamiltonian vector field on
TT*M.

Recall that any diffeomorphism ¢: P—Q between two
differentiabie manifolds, lifts to a symplectic diffeomor-
phism T *¢: T*Q—T *P for which

(T*¢ )*0p, =0, (34)

(see, e.g., Ref. 3, p. 180). Moreover, if ¢;: P,—P, , | (i=1,2)
are diffeomorphisms, then

TH@,00.) = (T *$,)°(T *,). (35)
By means of the mapping y, associated with the special sym-
plectic structure (TT *M, T*M, 71.,,, 6, Y) One can now lift
any diffeomorphism ¢: T*M—T *M to a diffeomorphism ¢:
TT*M—>TT *M, which is defined by

b =x""o(T*$) 'ox.
One immediately verifies that

7'T°M°‘;5 =¢°Trep- {36)
Since y*8;.,, = 6, and taking account of (34), it follows that
¢ *0, = 6,, (37)

and thus, in particular, b *w, = w,.

Consequently, ¢ is a symplectic diffeomorphism of
(TT*M, ). For any two diffeomorphism ¢,, ¢,:
T*M—T*M, one finds with (35},

(#2°¢1) = ¢,°¢,. (38)

Let Xe Z”(T *M ) be an arbitrary vector field with (local)
flow? consisting of the one-parameter group {,:sel }, where
ICR is some open interval. Then, using (38), it can be seen
that {4, :sel | is a (local) one-parameter group of diffeomor-
phisms on 77*M and let X denote the vector field which
generates it. In view of (36), it readily follows that 777.,, 0 X

= XOT .y (i-6., X and X are 71.,,-related). Moreover, since
each ¢, satisfies (37), we also derive that L3 6, = O or, equiv-
alently,

iyo,= —d (X.,6,).

Hence, each vector field Xe (T *M ) lifts to a Hamlltoman
vector field X on 7T *M with Hamiltonian F v = (X 8,). In
local coordinates, representing X by
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Xzfm)ii+nmm——

aq Ip;
and using the expression (12) for 6, we get
Fy=(p— Q) —qn,.

As a last property, we mention that for C any two vector fields
X and Y on T*M, one has [X,Y] [X Y]
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The forced Toda lattice: An example of an almost integrable system
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A method for solving forced integrable systems is presented. The method requires the knowledge
of at least one piece of information about the solution. Once this is known, one may then construct
the remainder of the solution. In this sense these systems are “almost integrable.” The forced
semi-infinite Toda lattice is used as an example and to illustrate the method.

PACS numbers: 03.40.Kf

I. INTRODUCTION

Although the inverse scattering transform' (IST) is well
established as a method for solving free integrable systems,
little work has been done on forced integrable systems. By
“free” we mean those systems without some type of forcing
term. Typical examples of free integrable systems would be
the sine-Gordon equation?

¢tt—¢xx +Sin¢:O’ (1)

where the boundary conditions are ¢ (x— 1 c0,f } = 27n, or
the nonlinear Schrédinger equation

i, =, £ 2J*Y, (2)
with the boundary conditions of {x— + «,f) = @, wherea
is an arbitrary complex constant.”* On the other hand, a
“forced” system would have some forcing terms which de-
termine much of the motion. As an example of a forced inte-
grable system, the driven sine-Gordon chain is where Eq. (1)
is valid for x > O, while the value of ¢ (0,¢ } is externally con-
trolled. If one drove this system such that ¢ (0,2 ) = 277, then
for every one unit of time a new kink would have been inject-
ed into this sine-Gordon chain. Other examples are easily
imagined.

One will note that the above-mentioned “free integra-
ble” systems are all completely solved by the IST. And this
method of solution is well known. But in general the “forced
integrable” systems are not solvable, except in special cases
wherein one may utilize some symmetry.® Otherwise most of
what we know of such forced systems has been obtained by
numerical methods.

If one reflects on what happens to the scattering data in
a forced integrable system, one can appreciate some of the
complexity of such systems. For example, in the above-men-
tioned driven sine-Gordon chain, the scattering data must
vary as some complicated function of time, simply because in
every new unit of time, an additional kink must appear,
which means that a new pole in the reflection coefficient has
to move across the real axis up into the upper half of the
complex {-plane (£ is the eigenvalue of the scattering prob-
lem). On the other hand, the time dependence for free inte-
grable systems is quite simple. The bound-state eigenvalues
are fixed in time as is also the magnitude of the reflection
coefficient. Another feature of these forced integrable sys-
tems is that the Lax pair relation®
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L, =[M,L], (3)

which for the free system is satisfied everywhere is now satis-
fied “almost everywhere” instead of “everywhere”. Equa-
tion (3) is violated at those points where the system is being
forced. It is this Lax relation which guaranteed the integrabi-
lity of the free system in the first place. So if for the forced
system Eq. (3) is now satisfied only almost everywhere, could
we then not expect such systems to be something like “al-
most integrable”’? Indeed, such is the case. As I shall demon-
strate, given the forcing terms and only a few additional
pieces of information about the system, the system then be-
comes completely integrable. This additional information is
not independent of the forcing terms and is quite dependent
on them. So there is a consistency problem. But once this
additional information is obtained or known, then the re-
mainder of the system does become completely integrable.

The remainder of the paper will be devoted to using the
forced Toda lattice as an example of an almost integrable
system and to illustrate these above ideas. By “forced Toda
lattice” I mean the semi-infinite Toda lattice’

Q,=P, (4a)
: (n>1),
Pn = - exp(Qn - Qn + l) + exp(Qn -1 Qn )’ (4b)

and where Q, (and P, = Q,) are externally controlled. In
other words, Q,(f ) determines how the zeroth lattice particle
will move and then the motion of all other particles to the
right of this particle is determined by Eq. (4). This system
was suggested to me by Professor Knopoff,® who along with
T. G. Hill® had observed a fascinatingly regular envelope
structure developing out of an apparently chaotic system.
(See their Fig. 2.) An example of the same is shown in my Fig.
1, but at a different time. What one should note is the regular
envelope structure to the left, whereas as one moves to the
right the structure becomes more and more random and
chaotic. To say the least, this is a very curious and strange
behavior, and one would like to be able to understand what is
happening here. In this case, the forcing of the zeroth parti-
cle is a very simple uniform forward motion Q¢ ) = — 2b,¢,
where b, is some negative constant. Thus the zeroth particle
is being rammed into the other particles, creating a shock
wave. The strange behavior is the subsequent creation of a
regular envelope from out of this chaotic shock wave.
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FIG. 1. Plot of b, vs tin the forced Toda lattice for b, = — 1.95at t = 64.0

where — 26, _, isthe velocity of the nth particle. Note the regular envelope
structure to the right.

The study of shock waves in one-dimensional lattices is
not new. An earlier analysis by Holian and Straub'® centered
on the relaxation toward thermodynamic equilibrium in the
wake of shocks. Included in their numerical analysis was the
Toda lattice. These numerical results for the Toda lattice
have recently been intensively analyzed'' by using local IST
techniques. (By “local” IST techniques it is meant that one
takes a small section of the system and analyzes it with the
IST, determining what solitons are present inside this sec-
tion, etc. Of course the section must be sufficiently wide so
that an analysis does make sense.) This is in contrast to what
I shall do here which would best be described as a “global”
analysis. Thus my analysis is a compliment to theirs, and
many of our results are of course the same. Mainly we differ
in emphasis. Holian, Flaschka, and McLaughlin'' sought to
explain the molecular-dynamics experiments. I am seeking a
more general method for determining the time evolution of
the scattering data when an integrable system is being
forced. Only the model and the specific results are the same.
The techniques developed by each of us are different.

Next I shall briefly summarize the IST for the semi-
infinite Toda lattice in Sec. II. Then in Sec. III I shall deter-
mine the time dependence of the scattering data for the
forced Toda lattice. This will not be a solution of the initial-
value problem since this solution will require a part of the
solution before one can construct the problem. So there will
be a consistency problem.

Nevertheless this solution is still useful, and in Sec. IV 1
shall discuss how one may use it to predict the scattering
data for all time. I shall then conclude with some concluding
remarks on the consistency problem.

Il. THE IST FOR THE FORCED TODA LATTICE

Following Flaschka,'? we define @, and b, by
an#lz%exp[_%(Qn_anl)]’ (Sa)

(r>1),
bn:—%Pn—l; (Sb)
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then from Eq. (4) it follows that

a,=a,b, —b,_,), 6
i (2 2 ! (n>2), (6a)
bn = Z(an +1 = an )’ (6b)

where b,(t ) and Q¢ ) are to be specified. Equation (6) then
determines a, and b, for n>2.
Consider now the eigenvalue problem'?

an+1Vn+l+anVn41+(bn—/1)Vn=0 (n>1)’ (7)
where A is the eigenvalue and we shall take a; = } (see Ref.
13). As shown by Case'® one may define the scattering data
in the semi-infinite discrete case as follows. (I shall shift to
the AKNS notation, where ¢, are the right eigenstates and
@, are the left eigenstates.) Take

A=z +1/2) (8)
and assume that @, — ] and b, each approach zero suffi-
ciently rapidly that the following results hold. Then the right
eigenstate may be defined by

Y, (2)>z" asn— + w0, (9)

where ¢,z ~ " is analytic inside the unit circle of the z-plane. I
define

v, (2)=y,(1/2), (10)

which is the second independent right eigenstate of (7).
Now define a left eigenstate by

¢, =z — 1/2) " [dol2)¥, (2) — Yo}, (2)]- (11)
By construction,

$o =0, (12a)

¢, =1. (12b)

Consider using Egs. (7) and (12) to construct the solution ¢,,.
Clearly ¢, will be at most a polynomial in A, of order n — 1.
Thus it follows that ¢, is analytic in A except for a finite-
order poleat A = .

Define'?

S (2) = €% = Pyf2)/Yol2), (13)
where & is the phase shift. Then the scattering data consists
of the values of 8 (z) for z on the unit circle (the continuous
spectrum) and the poles of S (z) inside the unit circle (the
bound-state spectrum). These poles are the zeros of #,(z) in-
side the unit circle. The bound-state part of the spectrum is
specified by the value of z at the pole (z;) and value of the
normalization constant M %, which is the negative of the resi-
due of z7 'S (z) at the pole. The constant M, is real, whence
M7>0.

The inverse scattering equations are obtained by con-
sidering the contour integral

dz $.1A)
27 Yl2)

where C is an infinitestimal circular contour CCW around
the origin. From this and upon expanding ¢, as

z—1/2)2" 1, (14)

bl =K, 3 K2, (15)

J=n

wherex,, = 1, oneobtains the following.'*'? First construct
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F, =L9f£ [1—S(2)]7, (16)
2miJ z
then for m > n>1, one has
Knrn +Fn+m+ Z Kan}+m=0 (17)

Jj=n+1
from which one may solve for &, ;. Next construct K, from

00

(Kn)'—2=1+F2n+ Z Knj17j+n' (18)
j=n+1
Then @, and b, may be recovered from
a, =4{K,/K,_,, (19a)
b" =%(Kn.’l+l _Kn~1,n)' (lgb)

From these equations one may construct the direct and
inverse scattering transform for the forced Toda lattice. Giv-
en(a,,b,) for n>2, by Egs. (7)-{13) one may map these quan-
tities into the scattering data. And given the scattering data,
from Eqs. (16)—(19) one may construct the inverse scattering
transform which allows one to reconstruct the potentials
{a,,b,) for n>2. Clearly we may do either of these at any
time. Now the question is, if (@, ,6, ) for n>2 evolves accord-
ing to Eq. (6), how will the scattering data evolve? This we
shall answer next.

lll. THE TIME DEPENDENCE OF THE SCATTERING
DATA

In the absence of forcing and when one has an infinite
lattice, Flaschka'? found that the time evolution of the eigen-
states of Eq. (7) was given by

V,=a, V.., —a,V, ,+CV,, (20)

n+1
where C is an arbitrary constant. In the infinite case, the
integrability condition for (7) and (20) is the infinite Toda
lattice [Eq. (6) valid for all #]. But in the semi-infinite case,
although we expect Eq. (20) to be valid for large n, one must
carefully account for the equations near n = O since Eq. (6) is
only valid for #>2. Equation (6) just cannot be true forn = 1
since a, and b, are constrained. Carefully accounting for
these equations near »n = O shows that for the forced Toda
lattice, the equivalent form of (20) is

n+41

V,=a, V... —a,V,_, +CV, (n>2), (2la)
V,=(C+A—=b)V,—V, (21b)
Vo= (d4a2 —2b)V, + Vyb,— A+ C). (21¢)

We comment that Eq. (21b) is simply Eq. (21a) forn =1
combined with Eq. (7) for n = 1. Equation (21c¢) follows upon
differentiating Eq. (7) with respect to time. One may easily
verify that the integrability conditions for Egs. (7) and (21)
are now Egs. (6).

However, one may not uniquely determine the time
evolution of the scattering data from Eq. (21). Note the term
a? present in Eq. (21¢). From Eq. (5) we have

a% =1 exp(@, — Qo) (22a)

b, = —20, (22b)
Although we do know b, because Q(t ) is to be specified, we
do not know what a3 will be because Q,(¢ ) is an unknown.
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For the present, let us assume that we do know what a2
is, and continue. To determine the time dependence of the
scattering data, S (z), per Eq. (13) we require the time depen-
dence of #,(z). From Egs. (9) and (21) for n large, I determine
that for the eigenstate ¥, (z), the constant Cis

C=—1{z—1/2) (23)
Define the function y (z,7 ) by

hr=xe" (24a)
then by (21b),

Yo=e"[(A — by — x] (24b)
and (21a) gives

¥+ 2%ty =0, (25)
where

N?=4a —b,— (b, —A). (26)

Given £2 (z,t ) and the initial values of y (z,0) and X (z,0),
one may construct the solution for y (z, ), and thereby the
solution for ¥zt ). From Eq. (13) one may now construct the
scattering function S (z,¢ ). However, the value of 443 (¢ ) is re-
quired before any of this may be performed. If 4a2(t } was
known then the remainder of the solution would follow. In
this sense, these forced integrable systems are “almost inte-
grable.” Some piece of the solution must be provided before
the remainder of the solution will follow.

However, if one knows something nontrivial about the
properties of 4a3 (¢ ), then something nontrivial can be said
about the scattering data, and thereby something nontrivial
about the remainder of the solution. It is in this manner that
I shall seek to glean information about this forced system.

IV. THE MOLECULAR-DYNAMICS CASE

Let us now specialize to the molecular dynamics case
where one takes
0 if <0,

Qolr) = [ —2by if 130,
with b, as a constant, — 24, being the velocity of the zeroth
particle. For this case the behavior of 443 is quite simple'’
and has two characteristic forms. These are shown in Fig. 2
and Fig. 3. In Fig. 2, I show the characteristic form of 4a? for
small velocities; in this example 5, = — 1. The main features
to note are the initial rise, followed by a decaying ringing,
which soon decays to a constant value of approximately
2.25. The value of b, = — 1 is a critical value,'! and for
magnitudes of b, larger than this critical value the character-
istic form of 4a3 changes, as one can see in Fig. 3. Here where
b, = — 2.0, we see that the ringing does not decay. Instead
4a3 seems to asymptotically approach an oscillation with an
amplitude about 1.0 and with an average value of about 9.0.

In either case, the dominant feature of 42 is that it
shifts from 1.0 at # = O up to some larger asymptotic value,
2.25for b, = —0.5and 9.0 for b, = — 2.0. So as a first
approximation one could replace 4¢3 in Eq. (26) by its
asymptotic average value and then proceed to solve for y
from Eq. (25). Of course this will not generate the exact solu-
tion for the scattering data. But one could expect that it

(27)
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FIG. 2. A plot of 4 vs t when b, = — 0.5 showing the rapid decay of the

initial ringing.

would contain the main features of the solution. This is in-
deed so. We have already determined that this procedure
works quite well for predicting the soliton birth rate.'*

As a final point, I wish to point out that there may be a
solution to the consistency problem such that given b,(t ), one
may be able to directly determine 4a3. Let me illustrate this
in the molecular-dynamics case, Eq. (27). First, I determine
the initial conditions on y and y. At = 0, we have

a,=1 b,=0 (n>2), (28a)
a =} (28b)
while b, is some nonzero value. Then solving (7) for ¢, gives
¥, =z" (n>1), (29a)
Yo=1—2b2z {29b)

So by Eq. (24) we have

2.5

A [ 1
IQAﬂ_':] 1

7A5'——]‘ ‘J

4a°> | T
5,3J
I
b,=-2.

] -2.0
2.5 —
1
BB T TT T TTTT] T T T T T 7T
Q 19 29 49 58 60
t e
FIG. 3. A plot of 403 vst when b, = — 2.0showing the asymptotic oscilla-

tions,
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xt=0)=z (30a)
Yit=0)=1(z2— 1) +zb,. (30b)

Since b, is a constant, then Eq. (25) may easily be turned into
the integral equation

2{A — bujyle)
=2"exp[(A — byt ] + (1 — 2b,z)exp[ ~ (4 — by}t |

42 J dt 'y(t"aak(t )sinh[(A — b,)¢' — 1)], (31)

where 44} only appears in the kernel.

Now consider the analytical properties of this solution
as |z|—0. In general we would expect essential singularities
at z = 0 due to the presence of terms like e * *. But now
consider (24a). We have

(1/2)¢; = (1/2)ye”, (32)
where (1/z)y, is known to be analytic inside the unit circle.'?
For arbitrary values of 4¢3 in (31), such will not be so on the
right-hand side. One may easily verify this by using a Taylor
series expansion about t = 0. One would also note that {32)
would have the correct analytical properties only if 4a3 satis-
fies the equations of motion, Egs. (6), for the proper value of
b,. (I have only checked this out to second order, but from its
form, it seems reasonable that it will be true to all orders.)

This leads us to conjecture that by demanding z~ 'ye®
to be analytic inside the unit circle, the correct solution for
4a3(t) may be determined and obtained without having to
solve the equations of motion. Given b (¢ ), Egs. (25) and (26)
show that 443 (¢ ) is a potential for y, while y satisfies a Schro-
dinger-like equation on the semi-infinite interval 7>0. Clear-
ly, 4a3 could be mapped into the scattering data for the prob-
lem given by Eq. (25). But whether or not the required
analytical properties of y in Eq. (32) are sufficient to obtain
this scattering data remains to be seen.
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The soliton birth rate in the forced Toda lattice
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The soliton birth rate in the semi-infinite Toda lattice is studied. The lattice is forced by driving
the zeroth particle with a constant velocity into the remainder of the lattice. An approximate
solution for the soliton birth rate is derived and it is shown to compare quite favorably with the

actual birth rate.

PACS numbers: 03.40.Kf

In a recent paper' one of the authors (DJK) discussed
and demonstrated how one could solve “almost integrable”
systems, one example of which is the forced Toda lattice.
This is the semi-infinite Toda lattice” where the equation of
motion is

Q, =expl@, — Q. 1) —expl@, 1 — Q) (1)

for n> 1. The position of the zeroth particle Q¢ ) is assumed
to be driven by some external agent. And the motion of this
particle then drives all other particles through Eq. (1). A
simple example is a case from molecular dynamics® where
one starts with a static lattice; then at t = 0 one forces the
zeroth particle to ram into the remainder of the lattice by
imposing upon it a uniform forward velocity. Thus @, = v,
where v, is a constant.

As this zeroth particle rams into the remainder of the
lattice, a shock wave is created, the front part of which con-
sists of a collection of solitons, all with approximately the
same velocity. Parts of this shock wave have been analyzed®
using “local IST” techniques to verify that solitons are pres-
ent with approximately the same velocities.

With the recently developed method for handling al-
most integrable systems,’ it now becomes possible to accura-
tely predict what the soliton structure and spectrum of this
shock wave is. The purpose of this paper is to predict this
spectrum and to compare the predicted soliton spectrum
with the actual observed spectrum. As we shall see, the
agreement between the predictions and the numerical results
is quite good indeed.

Next we shall summarize those equations and results
from Ref. 1 which are applicable to the motion of the soliton
spectrum. The solution of these equations requires one to
know beforehand what will be the separation between the
first two particles as a function of time. We approximate this
in a reasonable manner and obtain thereby an approximate
solution for the motion of the bound-state (soliton) spec-
trum. We next numerically compute the lattice motion from
Eq. (1), determine what the actual spectrum is at various
times, and then compare results.

According to Kaup,' the inverse scattering transform
(IST) for the forced Toda lattice requires the solution of the
eigenvalue problem

an+1¢n+1+an¢n—l+(bn'—ﬂ’)¢n=0’ (2)

where

282 J. Math. Phys. 25 (2), February 1984

0022-2488/84/020282-03$02.50

A=z + 1/2), {3)
and ¢, is the eigensolution where
n— + . (4)
The quantities @, and b, in Eq. (2) are related to O, by

¥, —>2" as

a, . =hexp[ — 4Q, — Q. _1)] (5a)

b=~ 140, 1, (5b)
and thus as n — + oo,

a, —} (6a)

b, —O0. (6b)

Note that b, is just the negative of one half of the velocity of
the driven zeroth particle. Also a, cannot be defined by (5a)
since the n = — 1 particle does not exist. Instead we may
define it to be 4, as was shown by Case.* The bound-state
eigenvalues are those values of z where y,(z) is zero.*” These
only occur when z is real and is between — 1 and + 1.

As shown by Kaup,' if one defines the function y by

x= the (7)
it then follows that

X=0R—b)y—ve (8)
and that y will satisfy

X +2% =0, ©)
where

N3zt)=4a3(t)— (b, — AV — b, (10)
and

C= —lz—1/2) (11)

Thus if one possessed the function y (z, }, from (8} one could
construct ¢,(z,? ) thereby obtaining the soliton spectrum (the
zeros of ¥,) as a function of time. However, before we may
construct the solution for y, we must know 443, which by
(5a)is

4a; = exp(Q, — Q). (12)
Although @, is given, Q, is not and requires the solution of
the problem which we are trying to solve. For the moment
we shall simply assume that 442 is known, and continue.

Assuming 4a3 (¢ ) to be known, then we may solve Eq. (9)
as follows. Take a solution of (9) to be of the form
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y =Ade*? (13)
then Eq. (9) gives

A = const/(¢)"?, (14)

$21=0%4 p+ u, (15)
where

u=A/A. (16)

The initial values for y and y follow from the initial
values for a, and b, as follows. Consider the moment just
after = 0 where b, has reached its nonzero uniform value.
Here

a,=4% (n>1), (17a)

b, =0 (n>2) (17Y)
We may now solve (2) for the initial value of #,,. We find

Y,t=01=2" (n>1), (18a)

Yolt=0)=1—2b, 2, (18b)
which by (7) and (8) give the initial values

Yt=0=gz2, (19a)

Yit=0=Az—1+4b,z (19b)

Matching the two possible solutions in (13) to these initial
conditions, we determine the correct solution of y to be

X=—A—[zcos¢ + X = B Gng |, (20)
Ay $o
where the subscripts ‘0’ refer to initial values and we have
taken

$o=0. (21)

So far no approximations have been made. From (8), the
zeros of ¥, will be where

Bold — by — p)+(/z=A=bit po)

tan ¢ = L
A—by— pull/z—A—b+ po) —do ¢
Define
A, = arctan[ ¢o/(1/2 — A — by + po)] (23)
with which Eq. (22) can be reduced to
¢ = A, + arctan[ ¢ /(1 — b, — u)]. (24)

Now, let us approximate in the spirit of the WKB meth-
od to determine ¢ and ¢,. From (1), (5), (10), (14), and (16) one
has that the initial value of u is

to="0,/283. (25)
Provided &O was not close to zero, the solution of (15) would
be ¢ = + 0. However, if £2° would be close to zero we
would have to account for the terms u* + . We do this by

evaluating them for gbo small. Otherwise they would have no
significant effect and could be ignored. For small ¢,,, we have

Ho==b1/ $§ = 4uj (26)
so we approximate Eq. (15) initially by
$5=1—(A—b)+301/8¢, (27)

which is a cubic equation for ¢ 2. It has only one positive real
root when A and b, are real.
For the later times, we shall simply ignore the effects of
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FIG. 1. A plot of 4a2 vs t when b, = — 0.5 showing the rapid decay of the

initial ringing.

2 and zi. Thus we take them to be zero in (15) and (24). It only
remains to specify the values of 4a3 (¢ ). To see how best to do
this consider 4a; vs ¢ as shown in Fig. 1, which is when

b, = — 0.5, and Fig. 2 which is when b, = — 2.0. What we
observe there is that 4¢3 rapidly shifts from its value of 1.0 at
¢t = 0 to a larger average value. Clearly the most dominant
feature is this definite shift in the average value. So we shall
approximate the value of 4a3 required in the calculation of é,
Eq. (15), by its average value. Thus

$2~(4a3) — (b, — A ) (28)
From Figs. 1 and 2, we have
b= —0.5, (4a3)~2.25, (29a)
b= —20, {(4a3)~9.0, (29b)
12.5
1.8 —{{HHH
1
7.5
5 i
4a; -
58—
: b1=_2.0
2.5 —
]
8.0 T T T T [ TT T T [T T T T [T T T T[T TT T 17T
) 19 28 30 40 58 60

t-———»

FIG. 2. A plot of 423 vs t when b, = — 2.0 showing the asymptotic oscilla-
tions.
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FIG. 3. The soliton birth rate when b, = — 0.5 as predicted by Eq. (31)
(solid line) and as actually is (dashed line).

which are the only values that we shall consider here.

Now

¢ = 41, (30)
and Eq. (24) gives

t=(¢) '[d,+ arctan( ¢ /(1 — b)))]. (31)

This equation gives all possible times associated with a given
possible value for a bound-state eigenvalue.

A plot of these 7 values vs z is shown by the solid lines in
Fig.3forb, = — 0.5and in Fig. 4 for b, = — 2.0. In Fig. 3,
these curves are easily interpreted as being the motion of the
eigenvalues of individual solitons. The first soliton is created
att~0.1 with an eigenvalue of justabovez = — 1. (A soliton
with z = — 1 would have a zero velocity, zero amplitude,
and an infinite width. When z is just greater than — 1, then
these values become finite and nonzero.) This eigenvalue
moves rapidly toward the limiting value of — 0.29 at which
all bound-state eigenvalues eventually tend to collect, as seen
in Fig. 3. The motion in Fig. 4 is quite similar, except that the
solitons are created at a faster rate, and the first soliton al-
ready exists at = 0. The limiting value is now — 0.10,
which means faster and narrower solitons as one would ex-
pect.

To see how good these predictions are, let us compare
this with the actual soliton spectrum. To determine this, we
shall numerically integrate Eq. (1) up to some time ¢. At this
time, we shall calculate the a,’s and the b,’s as given by Eq.
(5), then solve Eq. (2) numerically for ¢(z), plotting #,{z) vs z
fromz = — 1toz = + 1. One may then easily pick out the
zeros of 3,(z) which are the bound-state eigenvalues.

The result of this are the dashed lines in Figs. 3 and 4.
Asseen in Fig. 3, the agreement is quite good, the only differ-
ence being slight phase shift in the initial birth times. Other-
wise the eigenvalue motion is quite accurately predicted by
Eq. (24). Figure 4 does not show as good an agreement, al-
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FIG. 4. The soliton birth rate when b, = — 2.0 as predicted by Eq. (31)

{solid line) and as actually is {dashed line).

though the general shape and motion still quite accurately
reflect the actual curves. This discrepancy may arise in part
from ignoring the oscillations in 43 (see Fig. 2) which do not
seem to be decaying away. They do rapidly decay away in
Fig. 1, and for that value of b,, the results shown in Fig. 3
gave excellent results.

In conclusion we have demonstrated that one can solve
for the soliton spectrum, and its subsequent motion, when an
integrable system is driven by forcing terms. The method
does require having some particular information about the
solution, so it is not a method for solving the initial-value
problem. However, the information required for finding the
soliton spectrum need not be detailed, and we found average
values to be adequate to reproduce at least the gross features
of the curves.
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The reduced scalar Helmholtz equation for a transversely inhomogeneous half-space
supplemented with an outgoing radiation condition and an appropriate boundary condition on
the initial-value plane defines a direct acoustic propagation model. This elliptic formulation
admits a factorization and is subsequently equivalent to a first-order Weyl pseudodifferential
equation which is recognized as an extended parabolic propagation model. Perturbation
treatments of the appropriate Weyl composition equation result in a systematic development of
approximate wave theories which extend the narrow-angle, weak-inhomogeneity, and weak-
gradient ordinary parabolic (Schrédinger) approximation. The analysis further provides for the
formulation and exact solution of a multidimensional nonlinear inverse problem appropriate for
ocean acoustic and seismic studies. The wave theories foreshadow computational algorithms, the
inclusion of range-dependent effects, and the extension to (1) the vector formulation appropriate
for elastic media and (2) the bilinear formulation appropriate for acoustic field coherence.

PACS numbers: 03.40.Kf, 02.30.Jr, 92.10.Vz, 43.25. — x

I. INTRODUCTION

A significant advance in wave propagation modeling in
recent years has been the introduction and the widespread
application of the *“parabolic approximation.”' Since the
original formulation approximately 35 years ago by Fock
and Leontovich,> parabolic approximations have found ap-
plication in studies of electromagnetic,*™'? seismic,'*~'* and
acoustic"'**" propagation processes. Its direct application
as a basis of computational algorithms has been most suc-
cessfully accomplished in conjunction with the split-step
FFT algorithm of Tappert and Hardin.*®

Within the framework of the reduced scalar Helmholtz
governing wave equation, the parabolic approximation can
be termed a forward-scattering approximation. It is applica-
ble to a medium characterized by slowly varying (on a wave-
length scale) material inhomogeneities with respect to a dis-
tinguished global principal propagation, or range, direction
and valid for small propagation angles with respect to this
established horizontal. Furthermore, the medium must be
weakly inhomogeneous with slowly varying material inho-
mogeneities with respect to the appropriate perpendicular,
or cross-range, directions. The parabolic approximation is
generally distinct from (1) geometric acoustics (optics), a
small wavelength theory which neglects diffraction effects,
and (2) separation of variables methods which adopt a pic-
ture of horizontal stratification with the subsequent neglect
of waveguide mode coupling. The parabolic is a full-wave
approximation which retains both diffraction effects asso-
ciated with a given geometry and coupling between wave-
guide modes.

It is expected that in some experimental situations the
concept of a distinguished principal propagation direction
remains valid while the weak-inhomogeneity, weak-gradi-
ent, and narrow-angle limitations of the parabolic approxi-
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mation will be strained and often exceeded. Thus, for exam-
ple, while the parabolic approximation is ideally suited for
describing the propagation of sound in the water column, in
a range and depth-dependent ocean, a realistic consideration
of the sea-bottom interaction problem raises several trou-
bling points. These involve, but are not necessarily limited
to, the sharp discontinuity in the “sound speed” at the inter-
face of the water column and the sea floor and the potentially
much larger variations in sound speed in the sea floor itself.
An additional complication results from the fact that the sea
floor can transmit some energy in a shear mode. Further,
with regard to a number of seismic experiments the follow-
ing two situations are significant: (1) large variations in the
sound speed profile occurring over large distances, and (2)
significant beam wander, violating the narrow-angle restric-
tion measured relative to a global direction, while still valid
measured relative to a local direction.

In discussing the literature treating a failure of the para-
bolic approximation it is convenient to distinguish between
attempts to correct solutions of the parabolic equation,
through iteration or asymptotic methods?!*3-?>2® or envir-
onmental transformation approaches,*”** and attempts to
extend a parabolic propagation theory itself.!->6:'318.20 A
third approach is, of course, to return to the full elliptic for-
mulation, the Helmholtz equation, for a direct numerical
solution’® or approximate numerical techniques.**? The
approach presented here is to extend the parabolic propaga-
tion theory in the spirit of the works of Tappert,' Cor-
ones,>*'® Claerbout,"® and McDaniel.?

The extended theories to be developed are parabolic in
the sense that the range coordinate can be treated in an incre-
mental manner. This is the crucial characteristic of a para-
bolic model that makes it so amenable to numerical imple-
mentation. The nature of the “extensions” is in the manner
in which the cross-range coordinates are treated. Unlike in
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the ordinary parabolic wave theory, in which the cross-range
dependence enters through a strictly local operator, the
cross-range dependence in the extended parabolic theories
enters, in general, through a nonlocal operator.

While it might be natural to expect to derive extended
theories starting from the ordinary parabolic equation, it
seems more likely that such theories must arise from a syste-
matic sequence of equations starting from the Helmholtz
and proceeding, with the introduction of a hierarchy of ap-
proximations, to the ordinary parabolic. For transversely
inhomogeneous environments it is readily established that
the governing Helmholtz equation can be exactly factorized
into equations that are parabolic in the sense described (see
Sec. I1 and Appendix A). Thus, there is an extended parabol-
ic wave theory that is the exact equivalent to the Helmholtz
equation wave theory, as applied to forward propagation in a
transversely inhomogeneous half-space. Two of the princi-
pal results of this paper, then, are (1) the development of a
nonperturbative framework for the explicit construction of
the formal square root operator that exactly factorizes the
Helmholtz equation and (2) the subsequent systematic deri-
vation of approximate extended parabolic wave theories.
The Fourier-type analysis provides for two further develop-
ments. The formulation and exact solution of an associated
multidimensional nonlinear inverse problem follows, in a
complementary fashion, from the direct propagation model.
The related construction of a phase space path integral re-
presentation for the propagator provides, in conjunction
with alternative path integral constructions, both a global
and stochastic perspective of the extended parabolic wave
theories as well as the basis for computational algorithms.
The path integral analysis is presented in Paper I1.+

Il. SUGGESTIVE DERIVATION

To motivate the previous considerations more explicit-
ly, consider the following formal factorization calculation.
The Helmholtz equation for a transversely inhomogeneous
medium can be written as

{0 + [K°K(x,) + VI ]}4(x) =0, (2.1)
where ¢ (x) is the wave field, k (x,) = kK (x, ) is a spatially
varying wave number field, x is the principal propagation or
range coordinate, and V? is the transverse Laplacian asso-
ciated with the perpendicular, or cross-range, coordinates
{x, }. For acoustics, ¢ (x) is a pressure field, K (x, ) = ¢o/c(x, )
is a dimensionless sound speed profile or refractive index
field, and k = w/c, is an appropriate average or reference
wavenumber, w being the signal frequency, ¢(x, ) the medium
sound speed, and ¢, an appropriate average or reference
sound speed. The wave field can be expressed as the sum of a
forward and backward propagating wave:

d(x) =6 (x) + & " (x). (2.2)
The separate wave fields satisfy uncoupled equations,
(i/k)3,¢ " (%) + [K2(x,) + (1/K3Vi]"%6 *(x) =0
(2.3a)
and

—(i/k)3. 6 ~(x) + [K¥x,) + (1/k3)V2]'%6 ~(x) = 0.
(2.3b)
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That this factorization is exact when there is no range depen-
dence in the index of refraction and the boundary conditions
follows from the physical requirement that range variations
are necessary to couple forward and backward waves. In the
general case of a range-dependent environment, the forward
and backward wave propagation is coupled (see Appendix
A).

The parabolic approximation is readily recovered. A
Taylor series expansion suggests the approximation

[K%(x,)+ (1/k?)V; ]2
{1+ [K2x,)— 1] + (1/2k 3V}, (2.4)

which upon substitution in Eq. (2.3a) gives the ordinary
parabolic wave theory,

{i/k)3, + (1/2k V7 + LK ¥x,) + 1]}é T(x) =0.
(2.5)

Truncation after the first-order terms requires both (1)

[K *(x,) — 1] and (2} (1/k *)V? to be in some sense small in
addition to implicitly requiring that {3) the action (1/k 3)V?
on [K ?(x,) — 1] not result in terms that are appropriately
large. The first restriction is the weak-inhomogeneity limita-
tion and the second, the narrow-angle limitation, while the
third and final restriction corresponds to the weak-gradient
limitation.

Equation (2.3a) is the formally exact wave equation for
propagation in a transversely inhomogeneous half-space
supplemented with appropriate outgoing wave radiation and
initial-value conditions. For the theory to be well defined
and computational, an explicit representation of the square
root operator, interpreted as an integral operator

[K Z(XL) + ];12 Vf]l/z(ﬁ *(x,x, )

=de; Bix,x( ) *(xx) 2.6

must be constructed. This construction must address the op-
erator-ordering problem presented by the noncommuting
operators K %(x, ) and (1/k 3)V2.

The parabolic form of Eq. (2.3a) allows for the kernel
B{x, x)toberecovered from the propagator G *. This sug-
gests a natural inverse algorithm which reconstructs the re-
fractive index field from wave field data taken on a plane.
Symbolically,

G "—B(x,,x]), (2.7)
followed by
B (Xl ’XI )B (XL ,XI )

= [K2x,) + (VR [K () + (/R V]2

= K2x,) + (1/k3)Vv2. (2.8)
An explicit computational statement of Egs. (2.7) and (2.8)
requires the Fourier construction of the square root opera-
tor.

Equations (2.3a) and (2.3b) have been written in a form
which emphasizes their correspondence with the Schro-
dinger equation of quantum mechanics, in particular, the

analogous roles played by 1 /k and #i (Planck’s constant di-
vided by 27). More precisely, the reformulation of the sec-

L. Fishman and J. J. McCoy 286



ond-order Helmholtz equation as a coupled first-order
Schrodinger system in terms of a splitting matrix T (x), as
presented in Appendix A, is structurally analogous to the
two-component representation of the Klein-Gordon equa-
tion of relativistic physics.** The diagonalization implicit in
deriving the decoupled equationsfor ¢ * and ¢ ~ [Eqs. (A8a)
and (A8b})] parallels that in the Klein-Gordon theory for the
complete decoupling into positive and negative frequency
solutions for time-independent scalar and vector potentials.
Finally, Eq. (2.5) is recognized as a nonrelativistic Schro-
dinger equation.

lIl. HOMOGENEOUS HALF-SPACE

For the special limiting case of forward wave propaga-
tion in a homogeneous half-space, K *(x, ) = K 3, the square
root operator is readily constructed. It follows upon Fourier
transforming the Helmholtz equation and applying the radi-
ation condition that the transformed forward propagating
wave field @ *(x,p, ) satisfies the equation

[i/k)3, + (K} —p)"?] "(xp) =0, (3.1)

where {p, } is the set of perpendicular coordinates conjugate
to {x, }. Inverse transforming, the wave equation, Eq. (3.1),
in n spatial dimensions takes the form

L0,:6 txx) +f iy (K3 — )

x explikp, %, ) *(x.p,) =0, (3.2)
where
¢ Tlxx, )= fd "~ p, explikp,x,)d *(x.p,) (3.3)

relates ¢ * and its Fourier transform 55 * and where the
square root in Eq. (3.2) is chosen to correspond to the expon-
entially decaying branch for the forward (outgoing) wave.'
[In Eq. (3.2) and all subsequent equations, the integrations
are understood to be over the interval ( — o, 0 ).] The kernel
of Eq. (2.6), subsequently, can be expressed formally as
l; n--1 . -
8= (=) far e k3 — 1) expifn, ),
(3.4)

where y = x, — x| and takes the explicit form

B () = (Ko/2|yH kK, [p]) (3.5)
in two dimensions and

By) = (Ko/27|y)?) explikK,|y|)( — 1 + 1/ikK,|y])
(3.6)

in three dimensions. H {"(p} is the first-order Hankel func-
tion of the first kind. The square root function and its subse-
quent Fourier transform, the kernel, are understood in the
context of the theory of generalized functions.*’

The extended parabolic wave equation is local for fixed
Fourier components in the cross-range directions. The non-
locality in the physical space representation results from the
manner of superposing the perpendicular Fourier compo-
nents; there is no operator-ordering question in the homo-
geneous limit.

In anticipating the generalization to the transversely
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inhomogeneous half-space, it is natural to ask whether al-
lowing K 2 —K ?(x, ) in Eq. (3.2) provides the correct result.
In general, the answer is no! This generalization does not
allow for the action of the differential operator (1/k 2)V? on
the refractive index field; i.e., it does not correspond to the
proper order of applying the two noncommuting operators.
Not surprisingly, then, it will ultimately be seen that this
generalization is correct in the k— oo (high-frequency) limit,
where the refractive index field appears essentially constant
on the wavelength scale.

IV. TRANSVERSELY INHOMOGENEOQUS HALF-SPACE

For the case of forward wave propagation in a trans-
versely inhomogeneous half-space, the operator-ordering
question presents itself. Considering the two-dimensional
case for notational convenience, a Taylor series expansion of
the wave operator

(1/K)A = [K32) + (1/k 332 ] /2
=1+ }{[K%2) — 1] + (1/k )32}
—HIKY2) — 1] + (IVEYFE P + - (4.1)

illustrates the ambiguity for the terms beyond first order.
For different orderings of the noncommuting operators in
the higher-order terms, Eq. (4.1) represents in general differ-
ent integral operators. The ordinary parabolic approxima-
tion does not, in this context, directly address the ordering
question, and, hence, the explicit definition of the wave oper-
ator. It may be said to indirectly address the ordering ques-
tion when considering estimates of the range of its validity.

The square root of an operator is defined through its
square*®;i.e., (1/k JA s that operator which satisfies the oper-
ator equation

[(1/k)A)[(1/k)AT = K ¥z) + (1/k 2)3?. (4.2)

Application of Eq. (4.2) to Eq. (4.1) yields the symmetrical
ordering or Weyl operator producing,

(1/k)A =1+ Y€+ p) — b€ + eu + pe + 1)
+ k(€ + €u + eue + pe’
+ eu’ + pep + pe + p’) — -, (4.3)

where € = K %(z) — 1 is the field strength and uz = (1/k %3 2.
While the series representation of Eq. (4.3} is unambiguously
defined, it suffers several drawbacks. Its validity is at best
asymptotic in some, as yet, unspecified sense. Moreover, as
the aim is to construct extended parabolic wave theories in-
volving a wide range of conditions on the refractive index
field and the propagation angle, the use of an asymptotic
formulation linked to a particular physical limit (narrow an-
gle, weak inhomogeneity, weak gradient) is clearly too re-
strictive.

The basis for constructing a nonperturbative frame-
work is provided by the analogy between the forward wave
propagation problem and quantum mechanics as suggested
by the form of Eq. (2.3a) and the subsequent parabolic
(Schrodinger) approximation. In both cases the proper
meaning of an operator which is a function of the two non-
commuting operators Q = g and P = ( — i/k )3, (1/k<>1)
must be provided. The mapping of Cohen*’ or, equivalently,
of Agarwal and Wolf,*® provides the relevant operator repre-
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sentation

H(P.Q) = ffdu dv F(u,v)frH(u,v} exp[ik (vVQ + uP)].
(4.4)

In the quantum mechanical problem,
ul pa) = [ [ do by tuolexplik g + up] 4.9

is the prescribed classical Hamiltonian, the physical starting
point. F(u,v) is a transformation function which determines
the P—Q operator orderings. The desired operator H(P,Q) in
nonrelativistic quantum mechanics in an electromagnetic
field follows from Ay, ( p,g) upon the separate physical re-
quirement of gauge covariance or, equivalently, Hermiticity,
which then determines the equivalence class of functions

F (u,0).%%°° Moreover, the resulting class of transformation
functions has a stochastic interpretation.>' A more detailed
account of the general properties of the correspondence rela-
tionship has been given by Mizrahi.* In the wave propaga-
tion problem, however, the operator (or more properly, its
square) is given and Ay ( p,q) and F (u,v) have no apparent
physical significance. Only the product

D (1,0) = Fu,0)hy, (,) (4.6)
is relevant. In this regard, the wave propagation problem is
analogous to (1) the Schrodinger equation for particle mo-
tion on a Riemannian space®® and (2) the thermodynamic
(Fokker—Planck) equation for particle diffusion.””

Utilizing the Baker—Campbell-Hausdorff formula,

exp[ik (vQ + uP)] = exp(ikvQ) exp(ikuP) exp(%il;uv),

4.7)

leads to the normal-ordered form of Eq. (4.4) and, subse-
quently, allows for the symbolic operator H(P,Q) to be writ-
ten as an integral operator in the form

H(—=L0,.4')/lq) = [auduig it (4.8)

where the kernel is given by

, k ’
AH(q,u)=;jdpﬂH(p, g +u

)eXP[il_cp(q’ ~ u))
(4.9)

and £2,4( p.q) is the inverse Fourier transform of fZH (u,v).

Equation {4.9), like its homogeneous medium limit counter-
part, Eq. (3.4), is understood in the distribution sense.** The
formal wave equation (2.3a) can then be explicitly written as

] |k 747
%amﬂx,zwfdz {;fdpﬂﬂ(p,{—z—)

X explikp(z — 2')] }¢ *(x,2) =0, (4.10)

where the “symbol” £2,,( p,q) associated with the square root
operator (1/k )A =H = [K *(q) + (1/k *)3;]"/* satisfies

2,:(p.9) = K?g) — p*

:(%)2fjffdtdxdydz!2“(t+p,x+q)

X 24(y + P,z + g) exp[2ik (xy — 12)],
(4.11)
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{ZH:_ (2,9 being the “‘symbol” associated with the square of
(1/k)A, (1/k *)A* = H* = [K *(g) + (1/k )32]. Equation (4.10)
is a first-order Weyl pseudodifferential equation. Equation
(4.11} is recognized as the composition equation in the Weyl
pseudodifferential operator calculus®® and embodies the de-
finition of an operator square root in terms of its square, that
is, Eq. (4.2) in conjunction with the Cohen formalism, Eqs.
{4.8) and (4.9). Equation (4.11) can be written in an equivalent
operator notation as,”

Klg) = p* =1lim cos| (8,9, —9,3,)|u( Pgh2ulny)
¥y g
(4.12)

In general, the appropriate branch of the multivalued func-
tions which solve the Weyl composition equation must be
chosen to correspond to forward (outgoing) wave propaga-
tion as was done in the homogeneous medium limit.

The construction procedure for the direct propagation
problem can be summarized pictorially by the following cor-
respondence diagram:

H < n,
! i
H < 0,

where the arrows symbolize the correspondence between the
appropriate quantities. A single arrow (—) indicates that an
operational or, algorithmic, definition of the transformation
is given for the direction indicated; a double arrow (<>} indi-
cates that the transformation is defined in both directions.
For prescribed K *(g), Eq. (4.11) must be inverted to deter-
mine {2y ( p,g), which then determines the wave equation
through Eq. (4.10). The direct propagation algorithm pro-
ceeds around the correspondence diagram in a clockwise
fashion.

Equation (4.11} is exact and provides a nonperturbative
basis for the construction of the square root operator and
subsequently the exact extended parabolic wave theory. In
the homogeneous medium limit, Eq. (4.11) readily gives
2,,(p.q) = (K2 — p*)'’?, which in conjunction with Eq.
(4.10) reproduces the results in Egs. (3.2) and (3.4). Perturba-
tive treatments of Eq. (4.11) or (4.12) lead to approximate
extended parabolic wave theories.

In the high-frequency limit, k— oo, taking

24(p.9) =28 (pg) + (1/k2)2 3 p.g) + - (4.13)

in conjunction with the calculations in Appendix B results in
the extended parabolic equation

L0,6 txa) + fdp (K %l2) — p*)'"2 explifipz)p *(x, p) = O
(4.14)

corresponding to the “classical” limit of 2y ( p,q). Equation
(4.14), in its arbitrary-dimensional generalization, is exact
for the homogeneous medium limit for both even and odd
spatial dimension and thus extends the nonuniform WKB
approximation in even dimension. The wave equation, as a
wide-angle theory, can be said to incorporate the effects of
diffraction that are due to an inhomogeneous source field at
x = 0. Thus, Eq. (4.14) can be distinguished from geometric
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acoustics (as distinct from the WKB propagator and integra-
tion over the source field) in that the latter is not, in general,
exact for a homogeneous medium since it does not incorpo-
rate the effects of diffraction that are due to an inhomogen-
eous source field. The high-frequency approximation of Eq.
{4.14) is, in general, distinct from the geometrical approxi-
mations. Since the path integral representation of the solu-
tion to Eq. (4.14) contains cntributions from “all of the
paths,”** the high-frequency theory incorporates, in an ap-
proximate manner, diffraction effects due to medium in-
homogeneity. While medium diffraction effects could be
further incorporated into the high-frequency wave equation
through the extended treatment outlined in Appendix B, this
would not correspond to a uniform asymptotic treatment.
Rather, Eq. (4.11) must be solved in a uniform manner in the
k— oo limit to provide the appropriate kernel function for
incorporating diffraction phenomena.

In the limits corresponding to (1) narrow angle, weak
inhomogeneity, and weak gradient, (2) narrow angle, arbi-
trary inhomogeneity (field strength), and weak gradient, and
(3) arbitrary angle, weak inhomogeneity, and weak gradient,

2( pg)2u (1) = 27 p,g)2 {(1,9)
+4 [2J( g2 (1.y)
+ 22 (p.g)]

+A2[2 (P92 5y
+ 222 p.a)+ 2 3 p.g)2 Hiny)]
4o (4.15)

Here 4 is a formal expansion parameter introduced into
Eq.(4.11) or (4.12) by setting

(1) 2w(pg)=1+4[[K?g)—1]-p*,

(2) 2y:(pg)=K7q)—4p’,

(3) 2y:(pg)=(1—-p)+4[K%g) —1],
respectively. The subsequent perturbation theory for the
transversely inhomogeneous medium provides the appropri-

ate generalizations to the homogeneous medium limit ex-
pansions of 2, (p,q) given, respectively, in the form

(1) 2u(pg={1+4[K;—-1)=p]}"?

2) 2ulpg) =Kol — 4p7/K3)'",

(3) 2uipg)=01—-p)"[14+4(K5 - 1)/(1-p)]""2
The calculations are presented in Appendix C; the re-

sulting wave equations are summarized here. In the limit of

narrow angle, weak inhomogneity, and weak gradient, the
ordinary parabolic wave equation,

(i/k)3. ¢ *(x.2) + {(1/2k )32 + K2+ 11}¢ *(x,2) =0,
(4.16)
is recovered. This perturbative equation is formally analo-
gous to the nonrelativistic limit in the Klein-Gordon theory
resulting from the inverse mass expansion of the Hamilton-
ian achieved through the application of the Foldy-Wouth-
uysen approximate diagonalization.** Equation (4.16) is
further suggestive of weak-coupling (simple diffusion) ap-
proximations to the Master equation in statistical mechan-
ics.>*>* The ordinary parabolic wave theory is a full-wave
approximation applicable in the high-frequency regime, al-
though as a narrow-angle theory it is not appropriate for
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wide-angle source fields.

In the limit of narrow angle, arbitrary inhomogeneity,
and weak gradient, the extended parabolic equation is local
in the form

%&aﬁ *lx,2) +

g az(—K‘(—z)azczswx,z))

4k \ [K(2)]?
_ K"z i) —
D )| ACEE

reproducing the result previously derived by Tappert.’
Equation (4.17) is suggestive of weak-coupling (generalized
diffusion) approximations to the Master equation®*** and
particle motion on curved spaces (constrained systems).”®
The wave theory is again a high-frequency theory inappro-
priate for extended source fields. Equation (4.17) is of the
general form considered by Langouche, Roekaerts, and Tir-
apegui.>’

In the limit of arbitrary angle, weak inhomogeneity,
and weak gradient, the extended parabolic equation takes
the form

+ [K(z) +

(4.17)

L N , 1 T 1 A Vb e ot
T0:8 bl 4 [ S R 126 12
+ fdz’ (qu [K¥g)— IRz — q.q — z)q} (x,2') =0,
(4.18)
where _
fon=(L) oo
% exp( — ikéa)exp( — iknB) (4.19)

(1=&92+ (1 —97)"2
is a generalization of a diffraction integral discussed by Wat-
son.”” The Hankel function kernel is the homogeneous medi-
um result, and the square root functions are to be taken to
correspond to the exponentially decaying branch for the for-
ward (outgoing) wave consistent with the treatment of the
homogeneous medium limit. Equation (4.18) is a nonlocal
extended parabolic wave equation and makes explicit Tap-
pert’s symbolic equation.' Further, Eq. (4.18) is a full-wave
approximation, a wide-angle theory appropriate for ex-
tended source fields, not inherently a high-frequency theory,
and suggestive of strong-coupling approximations to the
Master equation in linear-gas relaxation theory.”*>* A first-
order (in the field strength) solution to Eq. (4.18) gives the
Born approximation.®® The transformed wave field satisfies

L0.8 xp)+(1—pY"8 (5 )
é(p _pl)¢ +(x’p') . 0’ (420)

k
dp’ =
+fp (1 _p2)1/2+(1 _p'z)l/z

where € is the Fourier transform of the field strength. Equa-
tion (4.20) illustrates the nonlocality for a fixed Fourier com-
ponent introduced by the presence of medium inhomogene-
ity.

~

The Weyl composition equation is amenable to uniform
asymptotic analysis. Of particular interest is a slowly vary-
ing medium with an isolated region of rapid, or even discon-
tinuous, variation. Moreover, in higher spatial dimensions
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(n > 2), the transverse coordinates can be treated unsymme-
trically leading to extended parabolic wave equations of the
form considered by Palmer.?'~?* Expressing the formal wave
equation (2.3a) in the equivalent form

i/k)[K2) + (1/k 2321120, *(x,2)

+ [K2) + (1/k )32 | ¢ *(x,2) =0 (4.21)

and subsequently applying the approximate representations
of the square root operator leads to a sequence of wide-angle
propagation theories. In particular, the ordinary parabolic
approximation gives

(i/k)LIK 2) + 1] + (1/2k 23218, ¢ *(x.2)
+ [K2(2) + (1/k )32 | ¢ *(x,2) = 0.

Equation (4.22) is no longer parabolic in the usual sense, but
bears a striking similarity to strong-coupling limit equations
in linear-gas relaxation theory.**>® This wide-angle wave
equation, formally derivable from a rational operator func-
tion approximation to the square root operator, is equivalent
to an infinite-order approximation (in p?) to £2,,( p,q). The
Weyl composition equation thus provides the analytic
framework for the rational approximation to the wave equa-
tion developed by Greene.””

The Weyl composition equation can, in fact, be inverted
for several nontrivial X *(g) profiles. In particular, solutions
follow for linear, quadratic, delta function, and discontin-
uity profiles which provide for an exact analysis of strong
refractive and diffractive effects.”

The arbitrary-dimensional generalizations of the re-
sults in this section follow immediately.

(4.22)

V. INVERSE FORMULATION

The factorization analysis presented in Sec. IV makes
explicit the symbolic inverse formulation outlined in Sec. I1.
Mathematically, the refractive index field (or its square]j is
reconstructed from the full-space Helmholtz Green’s func-
tion G.*° The reflection principle (or method of images) re-
lates the half-space propagator G * and the full-space
Green'’s function G through

G " (x,x, |0,x]) = —23,G (x,x,]0,x]). (5.1)

The parabolic form of the wave equation (4.10) then relates
the kernel B (x, x| ) to G * through

B(x,,x) = _‘i—’{i%[axa *(xx, [0x])]- (5.2)

Combining Egs. (5.1) and (5.2) then reconstructs the kernel
function from Green’s function data taken on the initial-
value plane in the form

Bx,x) = %lixg[&iG(x,xl 0,x)]- (5.3)

The symbol £2,,( p,q) (in its arbitrary-dimensional form) is
then constructed through an inverse Fourier transform of
the kernel function as expressed in Eq. (4.9) and subsequent-
ly yields the refractive index field upon a direct application
of the Weyl composition equation (4.11), for p = 0. The in-
verse algorithm proceeds around the correspondence dia-
gram (pictorial summary) in a counterclockwise fashion.
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The direct propagation algorithm requires the inversion of
Eq. (4.11) while the inverse propagation algorithm only re-
quires a direct computation of Eq. (4.11).

For the physical experiment, a point source is intro-
duced into the medium defining the initial-value (x = 0)
plane. The second derivative with respect to the range of the
pressure field is then determined as a function of the point
source position. This set of measurements can, in fact, be
accomplished on a downfield plane.

This inverse formulation can be distinguished from
those associated with plane wave sources and far-field data.
The location of both the field source (finite) and the data
measurements is within the scattering region. In this regard,
the analysis is similar to the stratified environmental model
of Stickler and Deift®' and thus applicable to ocean environ-
ments and certain seismic (bore-hole) experiments. Most im-
portantly, the method is a direct inversion of an arbitrary-
dimensional propagation equation which requires less
symmetry than those models (i.e., Stickler-Deift) reducible
to the standard one-dimensional formulation of Deift and
Trubowitz® or Gel'fand and Levitan.®® Thus, for example,
in a general #-dimensional Cartesian formulation, the re-
fractive index field can be a function of as many as (n — 1)
coordinates in the factorization model, while a function of
only one coordinate in an “‘effective one-dimensional” mod-
el.

The factorization algorithm exactly inverts the inher-
ently nonlinear relationship between the measured data and
the refractive index field as reflected in the Lippmann—
Schwinger equation for the propagator.®® Approximate in-
version algorithms follow readily from the perturbative
treatments of the Weyl composition equation. K *(g) is relat-
ed to £2,4(0,q) in a quadratic fashion and through a linear
integral relationship, respectively, in the high-frequency
(k— o0 ) and weak-inhomogeneity (Born) limits. In conjunc-
tion with a weak backscatter perturbation theory suggested
by the form of Eqs. (A7a) and (A7b), the factorization inver-
sion algorithm could be extended to weakly range-depen-
dent environments.

VI. DISCUSSION

The association of Egs. (4.8)—(4.12) with the theory of
pseudodifferential operators®~°7 provides for a mathemat-
ical framework for the evaluation of the approximate ex-
tended parabolic wave theories. The Cohen formalism is
readily connected to the theory of pseudodifferential opera-
tors. The choice of the standard [F (u,v) = exp( — Jikuv)], an-
tistandard [F (u,0) = exp(%il—cuv)], and Weyl [F(u,v) = 1] or-
derings in Eqgs. (4.6), (4.8), and {4.9) results, respectively, in
the standard,

Ju— / E !
H(—=L0,0' )01 =5 [ [audp hutpa)

X explikplg' — w)lf(u),  (6.1)
the antistandard,

Hu( _TI a, ,q')/(q') — ?I—:T_ ffdu dp hy( p,u)

xexplikplg' — u)lf (), (6.2)
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and the Weyl,

w) _l' ' l__l_c_ q,‘{"u)
w( o far=o [[amarn(n 5

xexplikplg' — u)lf (u), (6.3)

pseudodifferential operators. To be more mathematically
precise, the pseudodifferential operators in Egs. (6.1)—(6.3)
and the corresponding operator calculi are understood for
appropriate symbol (4, p,q)) classes defined through esti-
mates on the symbol derivatives. Roughly speaking, the
pseudolocal character of the operators is reflected in the
large |p| behavior of the symbol and its derivatives; a rapid
decay at infinity for high p derivatives is required.

For symbols which are polynomials in
pH( =i/ k )3, » q') corresponds to Ay ( p,q’) with p replaced
by (— i/k)d, put to the right of the coefficients,
H(—i/ k )3, ,q") corresponds to hy ( p,q’) with p replaced by
( —i/k)d, put to the left of the coefficients, and
HY(— i/k )3, ,q') corresponds to the symmetric compro-
mise which associates the term y (¢')p" with the operator

PG SIEUC =)
— —d,_ —d,
2::/_;0.]' k q X(q) k q

Equations (6.1)-(6.3) then provide extensions of partial dif-
ferential operators with nonconstant coefficients through
the enlargement of the class of admissible symbols beyond
polynomials in p. In the general case then, for example, Eq.
{6.1) loosely corresponds to allowing the differential opera-
tor to act first followed by the operation of multiplication by
functions of ¢’. The antistandard and Weyl pseudodifferen-
tial operators can be viewed as rearrangements of the more
common standard pseudodifferential operator. In the wave
propagation problem the Weyl representation, through Eqgs.
(4.6), (4.8), and (4.9), is canonical [2,( p,q) = hy( p,q)]. Stan-
dard or antistandard representations of the determined for-
ward wave operator (£2( p,q)} correspond to different func-
tions /1,4 ( p,g) and follow from Eq. (4.6).

From a strictly mathematical viewpoint, this analysis
has been formal in nature. Equation (4.11) must be examined
in detail with respect to classes of functions K %(g) to establish
the appropriate estimates on {2, ( p,q) necessary for the prop-
er formulation of Weyl pseudodifferential operators.
Further, the subsequent first-order Weyl pseudodifferential
wave equation is subject to questions concerning existence
and uniqueness. In this regard, the relevant physics of for-
ward wave propagation provides the constructive guide.

The n-dimensional Helmholtz equation for a trans-
versely inhomogeneous medium is naturally related to para-
bolic propagation models through (1) the n-dimensional ex-
tended parabolic (pseudodifferential) equation and (2) an
imbedding in an (» + 1)-dimensional parabolic (Schro-
dinger) equation. The first relationship provides the basis for
the operator analysis while the interplay between these two
formulations suggests the development of parabolic and el-
liptic-based path integral representations. The path integrals
provide a global perspective of the transition from elliptic to
parabolic wave theory and further allow for the natural in-
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troduction of the concept of an underlying stochastic process
and the notion of strong- and weak-coupling regimes, in ad-
dition to an interpretation in terms of free motion on curved
spaces. Specifically, the Hamiltonian phase space path inte-
gral representation of the propagator,

G *(x2l02) = lim [ ] d [] 2
x,2|0,z,) = lim Z, -
bez|02,) = lim | I] 45 T] 577

_N
Xexp[ik_z Pz, —z_ )

j=1

x Z, +2z;_
e I
in conjunction with the representations associated with
Feynman and Fradkin, Feynman and Garrod, and Feynman
and DeWitt-Morette provide a unifying framework for dyn-
amical approximations, resolution of the square root opera-
tor, and the concept of an underlying stochastic process.*?
Computationally, the Hamiltonian phase space path inte-
grals corresponding to approximate resolutions of the
square root operator [{2,,( p,q)] should provide the basis for a
marching algorithm in a manner analogous to that provided
by the split-step FFT algorithm’® for the ordinary parabolic
approximation.

The principal extension is the inclusion of backscatter
effects. The exact formalism developed for the transversely
inhomogeneous medium can provide the basis for perturba-
tion treatments in two distinct ways. The formal field split-
ting analysis in Appendix A [Egs. (A7a) and (A7b) as men-
tioned in Sec. V] suggests the inclusion of weak backscatter
effects in an obvious manner.' The imbedding of the #-di-
mensional Helmholtz equation in an (# 4 1)-dimensional
parabolic problem, in conjunction with recent work by De-
Santo®** on the imbedding of the elliptic radiation problem
in an appropriate n-dimensional parabolic model, suggests
the inclusion of backscatter effects through imbedding
methods®® focusing on the spatial dimension as a variable.
This imbedding can be viewed as a dimensional perturbation
theory. The inclusion of backscatter effects in the direct
propagation problem would have its natural parallel in the
inverse formulation.

There are several areas of direct application. The struc-
tural similarity between the wave propagation problem and
the two-component formulation of the Klein-Gordon equa-
tion indicates the applicability of the factorization analysis
to hyperbolic wave equations in the time domain. This is
reinforced by Davison’s®® general approach to field splitting
and invariant imbedding for linear wave equations in con-
junction with the suggestive analysis in Appendix A.

The operator and corresponding path integral forms of
the factorization analysis provide the framework to extend
the narrow-angle, weak-inhomogeneity, and weak-gradient
acoustic field coherence formulation.” The incorporation of
the elliptic effects of the Helmholtz theory would subse-
quently lead to the development of extended coherence the-
ories of which the ordinary parabolic would be but one parti-
cular limiting case. The pseudodifferential coherence
formulation then suggests the development of an analogous
inverse formulation. A time-domain coherence formulation
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(broad-band signals) is also amenable to a pseudodifferential
operator analysis which would extend the scope of a natural-
ly suggested “‘geometric” theory.

Wave propagation in elastic media can also be ad-
dressed. The analysis in this case would involve the exten-
sion of the scalar factorization methods to the appropriate
vector formulation. The development of the appropriate
nonlocal wave theory would serve to both clarify and extend
the recent work of Corones, DeFacio, and Krueger®'® based
on field splitting techniques. The validity of the ordinary
scalar parabolic wave theory requires that the chosen refer-
ence wave number k be approximately equal to the actual
wave number k. In the extended formulation the value cho-
sen for the reference wave number is not material. A diffi-
culty in constructing a parabolic stress wave theory results
because of an ambiguity in an appropriate choice of the refer-
ence wave number, since there is more than one propagation
mode with each mode suggesting a different reference.'>™'*
The calculations in this paper suggest that a systematically
derived vector parabolic wave theory, even to lowest order,
will be nonlocal in the manner in which the cross-range co-
ordinates are incorporated. Apparently, local parabolic ap-
proximations only result upon mode separation. Further,
Eq. (4.20) can be directly derived from the Lippmann-
Schwinger equation for the propagator at the level of the
Born approximation in conjunction with Eq. (5.3). Inasmuch
as this procedure can be interpreted to be a derivation by
range incrementing, this suggests the use of a range incre-
menting derivation of a vector parabolic wave theory.'” It is
not difficult to show, however, that this would not be correct
for a wide-angle treatment due to the difficulty of mode cou-
pling at the boundary of the half-space. It may prove to be
valid for a narrow-angle treatment, but justification of this
requires further study. Finally, inverse algorithms have al-
ready been developed for problems that are reducible to one-
dimensional formulations.”""?
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APPENDIX A: FIELD SPLITTINGS AND THE WAVE
EQUATION

The reduced scalar Helmholtz equation
[V’ + kK °(x)]¢ (x) =0 (A1)
can be written as a first order system
3D e o)
*\a.4(x))  \— (VI +k’K*x) O/\d.4(x)/)’
(A2)

where x is the distinguished or range coordinate. A formally
arbitrary splitting matrix T (x) defines a decomposition of the

total wave field into forward ( + ) and backward ( — )} com-
ponents,
)\ ( $ (x)) aa
(5 -) = 700,10 A3
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with the subsequent transformation of the wave equation
{A2) into the form

$ *(x) _ -1
o.(( ) = . rearT ~m) |
0 —1
10 g o o)
6"
X (¢ _(x))' (A4)

For an arbitrary splitting, the forward and backward wave
fields do not have an obvious physical interpretation in terms
of propagation solely in the positive and negative x direc-
tions, respectively. Taking the splitting matrix T (x) to be

1 —i/A
rn=( %)
where
(1/k)A = [K*(x) + (1/k3)v2 '3, (A6)

gives the following set of coupled equations for the forward
and backward wave fields:

9.4 "(x)=(— 4d A" + 1)iA)p *(x)

+1id, A~ (iR ~(x) (ATa)
and
3.4 ~(x) = Lid A™ (iA)$ " (x)
+(—Ld AT — 1)iAJ ~(x).  (ATb)

When K *(x) is range-independent, K *(x) = K *(x, ), Egs.
{A7a) and (A7b) decouple and yield the exact equations for
the forward and backward wave fields as given by Eqgs. (2.3a)
and (2.3b),

(i/k )3 b *(x) = (— 1/k)Ad *(x) (A8a)

and
(i/k)3.¢ ~(x) = (1/k )Ad ~(x). (A8b)

In this physically obvious case, the forward wave field corre-
sponds to propagation in the direction of positive x while the
backward wave field corresponds to propagation in the di-
rection of negative x. If K *(x) is a slowly varying function of
range, then Egs. (A8a) and (A8b) serve as extended parabolic
approximations to the Helmholtz equation. Despite the non-
local nature of the operator in the splitting matrix 7',(x), this
particular field decomposition is consistent with the princi-
ple of localization of Bellman and Kalaba.?

By applying other splitting matrices in the range-inde-
pendent case and subsequently decoupling the equations by
effectively setting the off-diagonal terms equal to zero, local
approximations to the exact nonlocal extended parabolic
equation are obtained. For example, the splitting matrix

r 1(1 -—i/l_cK(xl)) A9)
==\ k)
considered by Corones’ gives the coupled set of equations
3.6 *(x) = (KK (x,) + —— vz) (x
8 1) = (K (x,) + 3 91 )6
i
- Vilg (% A10a
+ sz 7t)e W (A10)
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and
— — —i 2 -+
3.6 (x)—(y_dqxl)vl)r» (x)
- i\,
+<—le(X1)‘mV1)¢ (x)

(A10b)

While Egs. (A 10a) and (A 10b) are exact, it is seen that, in this
splitting, the forward and backward fields do not decouple in
this range-independent case. The spurious or “kinematical”
reflections are an artifact of the arbitrary (and thus physical-
ly approximate) identification of the forward and backward
wave fields. Equations (A8a) and (A8b) can thus be said to
fully take into account the kinematics of propagation.® Neg-
lecting the “reflection operators” decouples the equations,
giving
(/K138 *(x) = — (K (x,) + [1/2k *K (x,)] V1 ] *(x),
(Al1)

which corresponds to the approximation

(Kx,)+ (I/E)V 2= (K (x,) + [1/26°K (x,)] V7).
(A12)

While an infinite number of such “extended parabolic
type” equations can be derived in this manner, they do not in
general correspond to an a priori systematic perturbation
procedure in terms of an appropriate small parameter. Also,
the proper operator-ordering inherent in the definition of the
square root operator is often not explicitly addressed in these
approaches. Noting the perturbation result summarized in
Eq. (C17), it is seen a posteriori that Egs. (A11) and {A12)
correspond to the limit of narrow angle and arbitrary field
strength for an approximately constant refractive index
field.

APPENDIX B: HIGH-FREQUENCY PERTURBATION
THEORY

Substituting the expansion in Eq. (4.13) into Eq. (4.12)
results in the #(1) equation

Klg) = p* = lim [ 2 p.g2 .y ] (B1)
v g
with the subsequent solution
28(pg) = [K*g) - p*1""~ (B2)

The #(1/k ?) equation follows as

28(p.92§(p.g) ——6—hm(c?26’2 + 382 —29,9,3,3,)

nwy
Yy *q
X (2 9 p.g2 Q(7,p) {B3)
and has the solution
-1 KqK"(q)

23(pg) = .

(P9 T Er (B4)
The superscript primes in Eq. (B4) denote differentiation
with respect to the argument. Thus, to & (1/k 2),

:__ 1 _KgK"q)
Qu (pg) = [K¥g) - p?)'* — — ? :
H q) —p°] 8% 2 [Kz(q)—pz]sn
(BS)
The approximation inherent in Eq. (B5) clearly breaks down
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in regions where the refractive index field varies rapidly on
the wavelength scale and is not in general uniformly valid as
follows from the form of the #(1/k 2) term. This asymptotic
development does not include terms of exponential order.
The operator can be expressed in terms of the Weyl
symbol in the following symbolic manner®*:
H(P.Q) = {exp[(1/2ik)3,d, ] 2u(p.q)} |p—p - (B6)

q--Q
QbeforeP

With the result of Eq. (BS), Eq. (B6) takes the form
H(P,Q) = (1/k )A;—> ([1+(172ik)3,3, + 2(1/k )]

x{[Kg) —p" 1"+ OW/ED |,
q-Q
QbeforeP
(B7)
which to the lowest order yields
H(P,Q) = (1/k A — [K*g)—p°1'?|, ¢ - (B§)

q -Q
QbeforeP

Equation (B8) is equivalent to the standard pseudodifferen-
tial operator corresponding to the symbol [K *(g) — p*]'/3,
and thus the forward propagating wave equatlon is given by
Eq. (4.14) in the high-frequency limit.

The kernel associated with Eq. (4.14) is that given by
Eq. (3.5) with the identification K;—K (z). This correspon-
dence results since the commutator [Q,P]—0 in the k— oo
limit, or, in a more physical sense, since the refractive index
field appears constant on the wavelength scale. The high-
frequency wave equation, in retaining p” and K *(z) — 1 terms
to all orders, explicitly addresses the operator-ordering
question, although in the simplifying “classical’ limit. This
approximate theory is thus applicable for arbitrary angle and
field strength in a sufficiently high-frequency regime. In the
same manner, for example, the Weyl and antistandard pseu-
dodifferential operators approach the standard, or *“Q before
P,” operator in the k— oo limit.

APPENDIX C: EXTENDED PARABOLIC
PERTURBATION THEORY

For the limiting case of narrow angle, weak inhomoge-
neity, and weak gradient, Eqgs. (4.12) and (4.15)to (1) result
in the equation

1 = lim cos[(i/2k )3, 9, — 3,8,)12 $( p.a}2 (n.y),

n-4q
B P
Y g

(C1)
which has the solution
2{(pg =1, (C2)

consistent with the Weyl correspondences g,(P)«<>g,( p) and
8:(Q)«>g,( g). The (4 ) equation is given by

[K2(g)—1] —p*= 11m cos[ (i/2k 3,8, — 3,4,)]
X (!2 Wip.a) + 28y (C3)
= {,ig;[ﬂ Wipg) + 2% mp)], (C4
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which has the solution
24 pg) =3 [K?g) — 1] —p*}. (C5)
The £(4 ?) equation is given by

2022 pg) = — lim cos[(i/2k )(d,8, — 3,8,)]
X2\ p.g2 5 (n.y) (C6)
= — hm[l — (1/8% 29,9, —8,4,)]
X1 'd'( P2 (m.p), (C7)
which has the solution
23 pg) = — K% g — 1] —p*}* — (1/16k 2)[K *(g)]".
(C8)
Thus, to #(4 ),
2u(pg)=1+14{[K7(g) — 1] —p’} ~
—AA{[K g — 11 —p*) + (/KK (g)").

(C9)

To 74 ), Eq. (C9) gives the ordinary parabolic approxi-
mation, Eq. (4.16). In addition to the limits of narrow angle
and weak inhomogeneity, Eq. {C9) clearly demonstrates that
this approximation requires that the variations in the refrac-
tive index field, measured on the wavelength scale, must not
be too large. The secular nature of the expansion is apparent,
in particular, the nonuniformity associated with the angle.
In an appropriate high-k regime, the small p approximation
to £2( p.q) provides the dominant contribution to the wave
operator in the narrow-angle region. In retaining p* and
K *(g) — 1 terms only to first order, this approximation does
not explicitly address the ordering question in the definition
of the square root wave operator. The expansion is inherent-
ly a multiscale expansion,; if the K *(g) variations occur on the
order of a characteristic length /, then the A expansion impli-
citly assumes that 1/k 2/%is £ (1) on the 4 scale. Further, the
expansion corresponding to the homogeneous medium limit
1s readily apparent.

For the limiting case of narrow angle, arbitrary in-
homogeneity, and weak gradient, Eq. (4.12) to /(1) takes the
form

K *(g) = lim cos[(i/2k 3,8, — 3,3,)12 ' p.g)2 (1.3}

n p
v »q
(C10)
and has the solution
2{(pg)=Kg), (C11)

consistent with the correspondence g,(Q)<>g,(g). The £(4 )
equation is given by
— p* = lim cos[(i/2k )39, — ,9,)1(2 (g} {(n.y)

7 oep
y—q

+ 25121 p.q)). (C12)

Equation (C12) can be inverted and solved for £2 {/( p,q). Ex-
pressing Eq. (C12) in a form analogous to Eq. (4.11) and
applying standard Fourier integral methods leads to the re-
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sult

W(p.g) = ——det ds

—t¥) explikE(p —1)
0‘3’«; —§/2)+ 0281 + §/2} '
Noting the result of Eq. (C11), the integral in Eq. (C13) is
readily evaluated to yield

(L LK)
2K(q) 8k K'g) /)
thus giving to & (4 ) the result

K4~ 1 K'(g)
@ (21( @ Sk K'lg)

Examination of Eq. (C15) shows that the variations in
the refractive index field on the wavelength scale must not be
too large for the approximation to remain valid. Moreover,
the approximation also breaks down when K (g) is sufficiently
small. The nonuniformity with respect to the angle is appar-
ent as well as the implicit requirement that 1/k 2/ %is /(1) on
the 4 scale. The approximation explicitly addresses the op-
erator-ordering question through the summation of

(C13)

Ny pg)= (C14)

Ol pg) ) (c1s)

K *(g) — 1 terms of all orders. Writing X (q)

= {1+ [K?g) - 1]}"? and taking [K *(g) — 1] to be /{4 )
reduces Eq. (C15) to the ordinary parabolic approximation
result. Combining Eqgs. (C15) and (4.9) then yields the kernel

Anlg'.u)
=K(u+q1/2)8u—q)+4 ( 3721 i((::: i:"))ﬁ))
, 8" (u—q)
5 — —
X8 —q') + K (1 a2 >, (C16)

which then gives (with 4 = 1} Eq. (4.17). Equation {4.17), like
Eq. {4.16), is valid in an appropriate high-frequency regime.
For the limiting case of a homogeneous medium, Eq. {(4.17)
reduces to

(i/k)d. & *(x,2) + (1/2k *K()32d * (x,2) + Ko *(x,2) = 0.

(C17)

For the limiting case of arbitrary angle, weak inhomo-
geneity, and weak gradient, Eq. (4.12) to /(1) takes the form

(1—p%= }]in; cos[(i/2k (9,8, — 3,0,]
28(p.g)12 {(n.p) (C18)
and has the solution
23 p.g)=(1-p)"2, (C19)

consistent with the correspondence g,(P)<g,{ p). The #(4 )
equation is given by

[K *g) — 11 = lim cos[(i/2k )3, 8, — 3,3,)]

1Y
p
v -q
X [2 (P23 np) + 23m2 W p.g)].

(C20)

Equation (C20) can be inverted in the same manner as Eq.
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(C12) with the result
&(t ) explikqt )

24 pa)= [a
ulpa) Q0 p—1/2+28p+172)
Combining Egs. (C19)and (C21) then gives to & (4 ) the result
Du(pa) = (1 ="+ 4

&(t) explikqt)

M= (p=1/2P0 7 + [l — (p+ /2T
(C22)

(C21)

The nonuniformity with respect to the refractive index
field variations associated with the approximation of Eq.
(C22) is implicit in the integral correction term. For the
limiting case of a homogeneous medium, &t )
= (K2 — 1)8(t), and the first two terms in the appropriate
expansion readily follow. The reduction to the ordinary
parabolic approximation follows upon settingp = 4 '/*pand
t = A "?rin Eq. (C22) to yield

Bulpa)=(1— 497" >+ 47" [ar
&(4 '/>1) explikgd '*7)

“M—Alp—m2A" P+ =4 (p+ /207

(C23)
For field strength variations such that klA ''*3.1, the major
contribution to the integral in Eq. (C23) comes from the
neighborhood of 7 = 0. Thus,
A A 3/2
2upg=1—=p" +—
n(p.q) P 2"

der &4 "'*7) explikqd ''*7), (C24)
which to first order in 4 is
2u(pg) =1+14 [[Kg)— 1] - p*}, (C25)

the ordinary parabolic result. The approximation of Eq.

(C22) explicitly addresses the operator-ordering question

through the summation of p* terms to all orders.
Combining Eqgs. (C22) and (4.9) then gives the kernel

Aulg'u) = 2% fdp (1 —p*)'"* explikplg’ — u)]

+ Aqu QR (v — 9.9 — q'),

where R (a, B)is given by Eq. (4.19), and finally (with 4 = 1)
Eq. (4.18). For the limiting case of a homogeneous medium,
Eq. (4.18) reduces to

£0,6 ")+ [az (ﬁ

+§(Ké _NHYE |2 —z'|))¢ tz)=0,  (C27)

(C26)

H'(k|z —2))

where H {(p) is the zeroth-order Hankel function of the first

kind. Equation (4.20) results upon Fourier transformation of
Eq. (4.18).
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The n-dimensional reduced scalar Helmholtz equation for a transversely inhomogeneous
medium is naturally related to parabolic propagation models through (1) the n-dimensional
extended parabolic (Weyl pseudodifferential) equation and (2) an imbedding in an (n + 1)-
dimensional parabolic (Schrédinger) equation. The first relationship provides the basis for the
parabolic-based Hamiltonian phase space path integral representation of the half-space
propagator. The second relationship provides the basis for the elliptic-based path integral
representations associated with Feynman and Fradkin, Feynman and Garrod, and Feynman and
DeWitt-Morette. Exact and approximate path integral constructions are derived for the
homogeneous and transversely inhomogeneous cases corresponding to both narrow- and wide-
angle extended parabolic wave theories. The path integrals allow for a global perspective of the
transition from elliptic to parabolic wave theory in addition to providing a unifying framework for

dynamical approximations, resolution of the square root operator, and the concept of an

underlying stochastic process.

PACS numbers: 03.40.Kf, 02.30.Jr, 92.10.Vz, 43.25. — x

. INTRODUCTION

The reduced scalar Helmholtz equation for a trans-
versely inhomogeneous half-space supplemented with an
outgoing radiation condition and an appropriate boundary
condition on the initial-value plane defines a direct acoustic
propagation model. This elliptic formulation admits a fac-
torization and is subsequently equivalent to a formal first-
order forward-propagating wave equation,

(i/k )3, ¢ *(x.x,)
+ [K¥x,) + (17K )V ]2 *(x,x,) =0, (1.1)

which is recognized as an extended parabolic propagation
mode] with respect to a distinguished global principal propa-
gation, or range, direction x. In Eq. (1.1) K (x, ) is a dimen-
sionless sound speed profile or refractive index field, k is an
appropriate average or reference wavenumber, and {x, } de-
notes the perpendicular, or cross-range, coordinates. In a
previous paper’ it was established that the formal wave equa-
tion, Eq. (1.1), can be explicitly written (in an obvious two-
dimensional notation) as

i , k z4 2z
—d. ot dz' \— | dp 12 R
7o ¢ (X’ZHJZ[%IP “(p 2 )

X exp[i/‘cp(z—z')]] é *t(x,2')=0. (1.2)

Here the “symbol” £2,, ( p,q) associated with the square root
operator H = [K *(g) + (1/k %) &2 ] '/? satisfies

Dy:(pg) = K?(g) — p?

]; 2
X2y(y+ pz+¢q) exp[2i/_c(xy-—tz)], (1.3)

£2,:( p,q) being the “symbol” associated with the square of H,
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H? = [K %(g) + (1/k?) 82 ]. Equation (1.2) is a first-order
Weyl pseudodifferential equation; Eq. (1.3) is recognized as
the composition equation in the Weyl pseudodifferential op-
erator calculus and embodies the definition of an operator
square root in terms of its square. Perturbation treatments of
Eq. (1.3) result in a systematic development of approximate
wave equation representations of the propagation theory.

The wave equation form of the extended parabolic wave
theory, however, does not provide the only representation.
Path integrals can provide a qualitative as well as quantita-
tive equivalent representation of the propagation theory.
While it is perhaps somewhat ironic that the development of
extended parabolic theories is then primarily based upon an
apparent solution representation, it should be emphasized
that path integration does not merely provide a solution to a
partial differential equation. The construction of the path
integrals provides a global perspective of the propagation/
scattering experiment and thus a natural means for cumula-
tive error estimates. Furthermore, these representations also
provide a stochastic perspective of the phenomenon and sub-
sequently a stochastic interpretation of the transition from a
completely deterministic elliptic to a completely determinis-
tic parabolic wave theory. Asymptotic analysis of differen-
tial equation formulations does not naturally lead to cumu-
lative error estimates nor to the stochastic interpretation
referred to above.

Configuration and phase space path integral represen-
tations of the half-space Helmholtz propagator follow from
both the parabolic form of Eq. (1.2) and the elliptic form of
the Helmholtz equation. The factorization analysis provides
the basis for a Hamiltonian phase space representation
which can be termed direct (see Sec. II for a precise defini-
tion). This construction explicitly addresses the operator-
ordering question inherent in the formal square root wave
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operator and resolved in Eqs. (1.2) and (1.3). Exact direct
path integral representations for the forward propagator in a
range-independent half-space are constructed for a homo-
geneous environment. For a transversely inhomogeneous
environment, direct path integrals are constructed approxi-
mating the exact propagator to within a well-defined pertur-
bative resolution of the wave operator and corresponding to
both narrow and wide-angle propagation theories.

The elliptic-based analysis results in an indirect (see
Sec. H) path integral representation (Feynman—Fradkin),
which is formally exact and well defined. Thus, in principle,
this representation contains the resolution of the operator-
ordering question. However, this resolution is not transpar-
ent in the indirect representation, the principal utility of

which is the derivation of approximate solutions with inher-
ently a posteriori justifications. Further, two direct path inte-
grals follow from the indirect representation by a series of
formal manipulations. As obtained, then, these direct path
integral representations are to be accepted as either approxi-
mate (Feynman-Garrod) or symbolic (Feynman-DeWitt-
Morette); their construction does not explicitly settle the op-
erator-ordering question. The primary significance of the
direct path integrals heuristically constructed, then, is in
their physical and mathematical suggestiveness.

In conjuction, then, the path integral representations
provide a unifying framework for dynamical approxima-
tions, resolution of the square root operator, and the concept
of an underlying stochastic process.

Il. APPLICATION OF PATH INTEGRALS TO THE HELMHOLTZ EQUATION

The n-dimensional reduced scalar Helmholtz equation for a transversely inhomogeneous medium,

[V2+ k2K %(x,)] ¢ (x) =0,

(2.1)

is naturally related to parabolic propagation models through (1) the n-dimensional extended parabolic (Weyl pseudodifferen-
tial) equation and (2} an imbedding in an (» + 1)-dimensional parabolic (Schrodinger) equation. Relationships (1) and (2)
provide the basis for parabolic- and elliptic-based path integral constructions, respectively.

A. Parabolic constructions

Equation (1.1) is in the form of a Schrodinger equation with an arbitrary Hamiltonian operator. Using arguments based
upon the Hamiltonian formulation of classical mechanics*? and in a manner analogous to the Feynman construction,* the
half-space Helmholtz propagator can be symbolically represented as a path integral taken over phase space,’

. d
6 *txx,|0x)) = [ Dip.z )exp{z‘k [ar [ Bt — Hy pl,zi)] ] 22
c 0 dr
In Eq. (2.2), in analogy with the quantum mechanical case, the “classical Hamiltonian” H,,(p,,z,) = — [K*z,) — p} ] 12

and C is the set of phase space paths ( p,,z, ) such that z, (0) = x| and z, (x) = x, with p,(7), the “conjugate momentum,”

unrestricted.

The Cohen/Agarwal-Wolf construction provides the basis for an algorithmic, or operational, representation of the
general Schrodinger propagator, removing the inherent ambiguity in the Feynman formulation by properly accounting for
the operator-ordering.®~'° The operator representation’ (in a two-dimensional notation)

HP.Q) = Jf du dv F(u,v)fzﬂ(u,v) exp[ik (vQ + uP)],

where

i) = (2 [ [ do da bl pa) expl - log + up],

(2.3)

(2.4)

in conjunction with the Markov property of the propagator forms the basis of the path integral construction. This has been
considered in detail in a series of papers by Mayes and Dowker.!'~!” For a Schrédinger propagator corresponding to a
Hamiltonian operator given by Eq. (2.3), the result can be expressed as

+ m {0 dz 71 -Pe TczN *H (2.5)
G 0z,) = li I 4z [ ——==expli Nz, — 2z, ) + = H (P2, ” .
ezl02,) = Jim A4 Uk XP{' e Pl =z )+ H Pz )
where
woon o ,-( ” ’ q”+ql T 2.6
H{pyg ,q)——z— dsdt F(@" — q',s)hy p,_._z_—t explikst ). (2.6)
T

More specifically, the path in phase space in Eq. (2.5) is defined by the prescription z; = z(j/N ), p; = p*((j — 4)/N ], placing p;
halfway between z; and z;_ ,, with the further constraints z, =z, and z, = z. '% Further, all integrations in Eqgs. (2.3)—(2.6) are
taken over the interval ( — o0, ).
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For the wave propagation problem,
Dy (1,0) = F(u,0)hy (1,0), 2.7)

with 2y ( p,q), the inverse Fourier transform of .?IH (2,v), determined through Eq. {1.3) and the forward (outgoing) wave
propagation condition. That the representation for G * is not unique is seen with the realization that H ( p,g” ,q') is not uniquely
defined by £2,4( p,g), but is in general a function of the chosen transformation function F (,v). This is as it must be. Equation
(2.5) can be viewed as the discretization of a symbolic functional integral. It is well known that different discretizations,
corresponding to different F (u,v) functions, lead to different “Hamiltonian” operators and, thus, propagators.'® This is
compensated for by the discretized “effective Hamiltonian” in Eq. (2.6), which is just such as to preserve the total Hamiltonian
and result in unique equations of motion. The functional integral is then independent of the discretization as it should be.'*!?
A particular representation corresponds to the choice of the Weyl ordering, F (u,v) = 1, which subsequently identifies 2, ( p,q)
= hy(p,q)and H(p,q",q') = 24(p.[g" + ¢')/2). Thus, Eq. (2.5) can be written as

exp[zk > | pilz—z_ )+ N.(),..(pz —’—j_%-_—l—)” (2.8)

i=1

Well-defined perturbative resolutions of 2 ( p,¢) lead to corresponding approximate path integral representations of the half-
space Helmholtz propagator. Extension of Eq. (2.8) to arbitrary dimension follows readily. The path integral representation in
Eq. (2.8) is termed “direct” in that it is expressed directly as a functional integral.

z

—1 N
G *(x,z|0,z,) = hm dz;
G rzl02,) = ,[[, s 5.7

B. Elliptic constructions

The elliptic-based constructions proceed from the Green’s function for the n-dimensional Helmholtz equation in Carte-
sian coordinates for an infinite medium with arbitrary inhomogeneity satisfying

[V’ + kK *x)]1G (x,x,) = — &"x —x,), (2.9)
supplemented with an outgoing wave radiation condition. The acoustic radiation problem formulated in Eq. (2.9) can be
readily imbedded into an initial-value problem expressed in the form of a parabolic equation in one higher dimension. This just

expresses the well-known quantum mechanical Fourier transform relationship between the parabolic (Schrodinger) equation
propagator and the Helmholtz (fixed energy) equation Green’s function. Thus,

G(x,x,) = — r dr exp(likr)® (1,x]0,x,), (2.10)
2k Jo
where @ (1,x|0,x,) satisfies the parabolic equation
(i/k)3, @ (1,x|0,x,) + [(1/2k2)V? + }K ¥x) — 1)]® (1,x|0,x,) = 0 (2.11)
with the initial condition
& (0,x[0,x,) = 6"(x — x,). (2.12)

A configuration space path integral representation follows on inserting the Feynman representation for @ (7,x|0,x,)**°
resulting in

G(x.x,) f dr explyikr) f D(x(a))exp[zkf do [;(d"(") ) _ V(x(cr))”, (2.13)

where Pis the set of continuous paths from (x,,0) to (x,7). A corresponding phase space representation follows from Eqgs. (2.2)
and (2.11) in the form

. oo T 2
G(x,x,) = —= f dr exp(iikr) f D p(a),x(a))exp(i/_c J do [ plo-2Xla) [ Plo) | V(x(a))] ]) (2.14)
2k Jo c o do 2

In Egs. (2.13) and (2.14) k has an infinitesimally small, positive, imaginary part, kK — k + ie, enforcing the outgoing wave
radiation condition. The identification, ¥ (x) = — }[K *(x) — 1], is further noted. The path integral representations in Egs.
(2.13) and (2.14) are termed Feynman-Fradkin representations.'*'* These representations are termed “indirect” in that they
are expressed through an integration over a path integral as opposed to “directly” as a path integral. Further, the Feynman—
Fradkin representations are formally exact.

—
The construction of a direct phase space path integral —~1

representation of G (x,x,) proceeds from Eq. (2.14). Intro- G (x,X,) =~ ]-( hm H dx,

ducing the algorithmic representation (the lattice approxi- N ; /=1 Zs

mation) for the path integral in Eq. (2.14) corresponding to x 1 p__xp (KS,y) , (2.15)

Eq. (2.8) with 2,4 ( p,g) = — [} p* + ¥ (g)] and formally car- =1 (2m/k)t - €&

rying out the 7 integration results in'¢ where
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Sy = '21 [ pj'(xj —X )] (2.16)

and

b5 )

Sy corresponds to an appropriate discretized action, and &
plays a role analogous to an average energy. The phase space
path in Eq. (2.15) is the n-dimensional generalization of that
given for Eq. (2.5). Thus, the order of accomplishing the inte-
grations is prescribed and cannot be arbitrarily inter-
changed. The paths are not classical paths.®'” Schulman has
provided a detailed discussion on the limitation attached to
applying a literal physical path picture to formal canonical
path integral representations.® Equation (2.15) is the Feyn-
man-Garrod representation.

The interchange of operations and subsequent integra-
tion in the derivation of Eq. (2.15) is clearly heuristic; more
importantly, the resulting expression can only approximate
the exact result. The formal integration of the lattice approx-
imation in some sense bypasses the detailed consideration of
the inherent operator-ordering question. Gutzwiller’s for-
mal derivation of the WKB propagator starting from the
Feynman-Garrod representation'® suggests that Eq. (2.15)
only addresses the ordering question in some high-frequency
limit. To signify this as yet uncharacterized approximate re-
lationship, the symbol = is used in the appropriate equa-
tions.

Following Gutzwiller,'® the phase space integration in
Eq. (2.15) can be decomposed into an integration over the
variables {x;, p; ] on a hypersurface of constant ““average en-
ergy” [# as given by Eq. (2.17)] followed by an integration
over all values of the “average energy.” As k — «, the sta-
tionary path x; = Xg, Py, X5, Px, Xy = X for.Sy [Eq. (2.16}]
must be determined under the subsidiary constraint of the
fixed “‘average energy” condition expressed by the denomi-
nator in Eq. (2.15). In the N — o, or functional, limit the
isoperimetric problem is thus to determine paths x(), p(@)in
phase space for which S = f; da p(a)dx(a)/da is stationary,
given the end points at x, and x, as well as the “average
energy.” The Euler equations for this problem are the usual
Hamiltonian equations of motion. However, the usual Ha-
miltonian variational principle demands the far more re-
strictive condition that the trajectories always remain on the
energy surface. Garrod has established that the usual con-
stant energy Hamiltonian variational principle is unneces-
sarily restrictive and can, in fact, be extended to include tra-
jectories with a fixed average energy as suggested by the path
integral representation.’ In conjunction with the Jacobi
form of the least action principle,'® which reformulates the
principle in terms of the element of path length, the extended
variational principle suggests a formal direct path integral
representation in configuration space.

Thus, following Feynman,* Davies,” and Garrod,’ the
path integral formally results from the variational principle
upon exponentiating the Jacobi form of the action analog
and summing over all paths from x, to x with a fixed “aver-
age energy.” Specifically, this takes the form'®

(2.17)
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Glxx,) :%J D (x') exp[ik W (x')], (2.18)
where
W:f lldx'|| [1—2V(x)]'/? (2.19)

is the analog of the action associated with a ““free particle” on
a space with metric

di*=[1 -2V x)] |ldx'||2 (2.20)

and where E represents the space of paths from x, to x such

that
1 1 ( lldx’(t) 2 \ ]
—=— | dt|— Vix'(¢ 2.21
2 Tfo [2 a || T 221)
with the constraints
x'(0) = x,,
(2.22)
x'(1) = x.

The conditions expressed in Egs. (2.21) and (2.22) are
analogous to a condition of fixed average energy along the
path in quantum mechanics. The expression in Eq. (2.18) is
termed the Feynman-DeWitt-Morette representation; it is a
symbolic representation. A formal analysis of Eq. (2.18) in
the k — oo limit indeed yields the correct WKB result.
Thus, for the parabolic equation, the path space is construct-
ed from paths going from x, to x in a fixed time 7, while for
the Helmholtz equation the path space is constructed from
paths going from x; to x with a fixed ““average energy.” This
is suggested by the construction of the Feynman-Garrod
representation; in particular, from the form of the “energy
denominator™ in Eq. (2.15).

The Feynman~DeWitt-Morette representation formal-
ly effects the 7 integration over both the measure and the
exponentiated action functional in the Feynman—Fradkin
representation. Furthermore, the representation is explicit
in its underlying stochastic foundations. The stochastic pro-
cess with characteristics given by Eqs. (2.21) and (2.22) with 7
taken as a stochastic variable plays a role analogous to the
one that Brownian motion plays with respect to the stochas-
tic foundations of the parabolic equation.'®** Thisis true in a
heuristic sense, however, since the process in question has
not been studied in detail,'® and, consequently, it remains an
open question as to whether it can provide a rigorous math-
ematical basis for the Helmholtz path integral in the manner
that Brownian motion provides for the parabolic path inte-
gral.

For environments which are range-independent in that
V (x) is independent of one or more of the Cartesian compo-
nents of x, reduced path integral representations can be con-
structed. The appropriate homogeneous medium propaga-
tors factor from the Feynman path integral in the Feynman—
Fradkin representations resulting in lower spatial-dimen-
sional path integrals. The Feynman-DeWitt-Morette repre-
sentation also symbolically reduces in a straightforward
fashion. For the Feynman-Garrod representation a partial
integration over the phase space effects the reduction. This is
a heuristic operation since in a strict mathematical sense the
p-space and x-space integrations cannot be performed inde-
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pendently of one another—even in the ¥ (x) = O case.”®'° It

is, in fact, equivalent to formally integrating the Feynman-
Fradkin representation at the level of the lattice approxima-
tion, taking explicit account of the reduced form of the Feyn-
man path integral. Thus, the resulting propagators are ap-
proximate in the sense previously discussed.

For the two-dimensional case, n = 2, for an x- or range-
independent potential, V' (x,z) = V (z), the partialintegrations
over the x and p™ variables in Eq. (2.15) proceed in a straight-
forward manner (the details are given in the Appendix), lead-
ing to a reduced representation for the Green’s function in
the form

N dp?
G (x,z|x,.2,) =—7= 2”2k hm JHI dz, ]HI TR
exp|ik [SN + 23— )P x — x,]])
8 (1—#)" '

(2.23)

Here S\, and & are the appropriate one-dimensional (in z
and p?) action and average energy analogs of Egs. (2.16) and
(2.17) with the corresponding path boundary conditions giv-
enbyz,=z andz, =z

For the three-dimensional case, n = 3, two cases are of
immediate interest. For an x-independent potential,
V(x, y,z) = V ( y,z), corresponding to a distinguished direc-
tion taken along the x axis, the resulting reduced representa-
tion is of the same form as Eq. (2.23). Specifically, the Liou-
ville measure, action, and average energy analogs take on
their corresponding two-dimensional forms in the variables
z,y,p°, and p*. For a potential that is also independent of one
cross-range coordinate, V (x,y,z) = V (z), a further reduction
is possible following the same procedure as outlined in the
Appendix. The result of this further reduction is written as

G(x, y,ZIxs,ys,zs)

11m Hd H

N-— o i=1

XH(”(21/2k(l g)l/sz)

Z

q _
] L explikS,

(2.24)

where again S,, and & take on their one-dimensional forms,
zZo=z,andzy =z,and R, =[x — x,)* + (y —y,)*]"?is

{1l. HOMOGENEOUS HALF-SPACE

For the homogeneous half-space, K >
from Eq. (2.8) on noting the exact result' 2,(p,g) = (K2 —

~ N dpg
d. .
H % H 2w/k

J=1 J=1

*(x,2]0,2,) = hm

where V, =

*(x,2|0,z,) = llm

J=1 _/Al

_ N
exp(ik Z [pf-(zj
i=1

— 1(K'§ — 1) as before. The Feynman-Garrod representation follows from Eq. (2.27) in the form

d,
H dz; H 2:/1; exp[lk Z [ pilz; —

the appropriate range coordinate. Taking the source loca-
tion along the z axis and writing 7 = (x* + »?)'/?in Eq. (2.24),
the representation then corresponds to the case of cylindrical
symmetry with a range (#)-independent potentia],

H H 7 exp(ikSy)

ji=1 j— 1
ng’(z”zk (1 — &)\ ). (2.25)

Equation (2.25) can also be derived starting from DeSanto’s
integral representation,”' which for the range-independent

environment reduces to the Feynman-Fradkin representa-

tion upon the introduction of a Feynman path integral repre-
sentation for the parabolic equation solution.

The reflection principle, or method of images, relates
the half-space Helmholtz propagator G ™ and the full-space
Helmholtz Green’s function G for the symmetric extension
through

G(rz]0,z,) = hm

G "(x,x, [0x]) = — 23, G{x,x,[0x]). (2.26)

Equation (2.26) in conjunction with the representations of
Feynman and Fradkin [Egs. (2.13) and (2.14}], Feynman and
Garrod [Eq. (2.15)], and Feynman and DeWitt-Morette [Eq.
{2.18)] for the symmetrized environment results in path inte-
gral representations for the arbitrary half-space problem.
For a transversely inhomogeneous half-space, the reduced
representations allow for the appropriate constructions. For
example, in the two-dimensional case, the Feynman—Garrod
representation follows immediately from Egs. {2.23) and
(2.26) as

G *(x,z]0,z,) = 11m

—1 N dp?
dz; L
H H 27/k

j-] _/-*I
Xexp{lk [Sy + 2", — &)x]}.
(2.27)

The representation expressed in Eq. (2.27) can also be de-
rived starting from DeSanto’s integral relationship for the
waveguide problem.?’ A representation analogous to Eq.
(2.27) corresponds to the propagator for the half-space
boundary-value problem in its three-dimensional formula-
tion.

(x,) = K j, the Hamiltonian phase space representation of the propagator follows
p?)'2. The propagator takes the form

—2Z. i — _ 2)2711/2
5 1)+ (1= 2%) - (5] }) (.1)

1)]]exp<i/—cx[l _%é‘ [z +2V0]]l/2). (3.2)

The equivalence of the two path integral representations can be directly demonstrated by i integrating over the {z, } coordinates
in Egs. (3.1) and (3.2) in the manner of the Appendix. The resulting expressions are written as
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G "(x,2|02,) = Jim —J dpy II dp; exp[ik (py z - pf z,)]

i=1

Xexp{zk—— S (1 -2y — p;f]‘“]a(p: R — P

j—l

X&( py—1 — Pu) (3.3)
and
G *(x,2|0,z,) = Jim —= dp% H dp; exp[ik (pi z — p; z,)]
]_1
—_ 1/

Xexp(ikx[l - 2, [(p;)2+2Vo]] )6(p: B — P
i=

X&( py—1— Py) (3.4)

which are clearly equivalent. It is thus seen that, despite its heuristic derivation, Eq. (3.2) is operationally correct for the
homogeneous medium case. This is not surprising due to the absence of the operator-ordering question.
Formally defining a weighted averaging over the appropriate function space by

_ = (' dz(a)
(I (pla)= [ Diplaataex|it | da | pia) LL]} 1 (pla), (3.
supplemented with the normalization condition

(1) =6(2(1) — 2(0) = 6z — z.), (3.6)
the path integral equivalence can then be expressed as

(exp{ikx T—H(pla)]}) = (explikx{ T—H(pl@))]"}"2). 3.7

The “effective Hamiltonian” in Eq. (3.7) is given by H ( p(a)) = — {K2 — [ p(a)]*}'/?and f{a) denotes the average of f (@) on
the interval [0,1]. Thus, the equivalence is in equating the functional averages of the average *“effective Hamiltonian” and the
root mean square “effective Hamiltonian.”

Completing the integrations in Egs. (3.3) and (3.4) leads to the result

G *(x,2|0,2,) = ((kKox/2R,) H (kK R,), (3.8)
where R, = [x* + (z — z,)?]'/? and H {"(y) is the appropriate Hankel function. The three-dimensional case follows in an
analogous fashion, leading to the final result

G *(x, 9,20, y,z,) = (i(kKox/2mR §)explikKoR;) — 1 + 1/ikKoR5), (3.9)
where Ry = [x* + (y — y,)* + (2 — 2,)")' /%

Configuration space path integral representations follow readily from both the parabolic- and elliptic-based phase space
constructions. Performing the § pj } integrations in Eq. (3.1) with ¥, = O taken and noting the result in Eq. (3.8) leads to

+ ik 0% _ 2y1/2
G xzl02)= hm 11:[1 % J[Il [(2{1 + [z "zj—l)/a]z}llz) [H(l)(k6{1 Tl 5110 P 19

where § = x/N. The corresponding three-dimensional result follows in an analogous fashion. Equation (3.10) is just an explicit
statement of the composition law associated with the parabolic equation,

—1

G *(x,2]0,z,) = llm H dz; H G *(6,210,2,_,), (3.11)

and is termed a path sum.*?
For the elliptic-based construction it is useful to start from Eq. (2.15) written in the form

N_1 d exp[ 2 [p,(x J—\)]}
G,xx,)=G,x —x,)= — 11m H dx; H T ) (3.12)
py =1 (2]
M —(/N) T (pf
j=1
where the subscript # has been affixed to emphasize the spatial dimensionality and ¥, = 0. The p-space integral in Eq. (3.12})is
recognized as the inverse Fourier representation of the Helmholtz Green’s function in nN dimensions; thus

G, (x—x,)= 11m 1'[ dx; [N"V*G,y(N'2A)], (3.13)
Jj=1

(2) (2)

—xF_ 2)

where A is an nN-dimensional vector (x'" — x{})_,, x e X XD XD X2 XX
— e, X — x X2 2 X — x) with x denotmg the ith component of the n-dimensional vector x. The well-
known result for the Helmholtz Green’s function of arbitrary dimension,**
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G.y(N'?A)= %i(]_c /2R, )" 2 Hiy_ 3, (kR ,.x), (3.14)

where

N 172
Ry=N"Y (xj-—xj_l)z] (3.15)
j=1
and H {\)y _,,(7) is the Hankel function of the first kind of order (nN — 2)/2, then provides the final representation:
k (nN —2)/2 -
Gl —x,) = lim 11_11 dxy [0 () H (TR | (3.16
Specifically, for the two-dimensional case,
I N1 -
G, (x,z|x,,2,) = llm H dx; dz; [——NN( k ) HY | (kRZN)], (3.17)
Ji=1 27R IN
where
172
R,y —N”Q[z [x, —x,_ P +(z —z _,)2]] . (3.18)
j=1

The propagator G, follows on integrating over the range coordinate in Eq. (3.12) and noting the result in Eq. (2.26). In
analogy with Eq. (3.13) the representation takes the form

N—
G +(x,x(l) (2) ’xtn—l)lo’x(lixm ’x(n——ll)_ hm H dx. (N("‘”N/ZG(,‘_”N_,_I) (3.19)
o F=1
and in a fashion similar to Eq. (3.16),
G eV x®,. x" = MoxV x? . x" =) = lim Nl:ll dx-[hTXN(n ~ N2
Nevw ) 2y 7
p n-tN+u2 _
X (M_R—-—) Hip_ynanm KRy gy )| (3.20)
(n—-1)N +1

In Egs. (3.19) and (3.20) x is the range coordinate, x; is an (n — 1)-dimensional vector, and

172
Rin v =(N > X — j~l)2+x2) ‘ (3.21)

i=1
Specifically, for the two-dimensional case,
N—-1

G, (x2]0,z,) = 11m I 4z [m'xNN’z(

Jj=1

]'(' (N+ 1)/2 . _
T ) HY e RRy )|, 3.22)
N+1

where

A A I 3.23)

ji=1
IV. TRANSVERSELY INHOMOGENEOUS HALF-SPACE

For the transversely inhomogeneous half-space, the parabolic-based construction provides the principal results. Since
£2,,( p,q) has only been determined approximately, in general, for the square root operator, the Hamiltonian phase space path
integral can only provide an approximate representation of the propagator. The perturbation limits previously considered in
Paper I' are again appropriate.

In the ¥ — o, or high-frequency, limit, the forward propagating wave equation corresponds to the choice F (,v)

= exp( — %il—cuv) and Ay ( p.q) = [K *(g) — p*]"/?inaccordance with the identification of the operator as a standard pseudodif-
ferential operator.' It then follows from Eqs (2.5) and (2.6) that the path integral for the propagator corresponding to the
k — o wave equation, taken as a high-frequency approximation to the full propagator G *, is given by

—1 N d N
G*x,le,zS)~ hm H az; I] p,_ exp(tk 3 {pj(zj +— [K%z_,)— (pj)z]”ZD. (4.1
j=1 jwl 2a/k j=1

Equation (4.1) could equally well be expressed in terms of a Weyl discretization [F («,v) = 1], in which case Ay ( p,q) would no
longer be simply given by [K %(g) — p*]'/?, but rather in terms of an infinite series in (1/k ). It follows from Appendix B of
Paper I, in fact, that the Weyl discretization with A, ( p,q) = [K *(g) — p®]'/* provides an approximate propagator, which is
valid through the next order, in the form

6 teal0z)= Jim [ 1 di, T e eno(i 3 { ot~ 0+ 5 [£(22) ] ). w2

i=1 i=1

Performing the { p;} integrations in Eq. {4.1) then leads to the approximate path sum representation
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. ikK(z; _,) ) ) 271/2 }
G *(xz0z,)= lim }I=11 dz }1_11 {(2{1 e =z Ve [H(kSK (z;_ )1+ [(z, — 2z, )/817}/3)] 1 (4.3)
which for the limit K = 1 reduces to the exact result given by Eq. (3.10). Since the high-frequency propagator contains
contributions form “all of the paths” in the path integral, it is a full-wave approximation, incorporating, in an approximate
manner, what are commonly referred to as medium inhomogeneity diffraction effects.

For the homogeneous half-space the functional averages of the average and root mean square “effective Hamiltonian”
are equivalent [Eq. (3.7)]. This can be viewed as a lack of “dispersion” resulting from the absence of the operator-ordering
question associated with the noncommuting operators Q and P. Since in the k — oo limit the commutator [Q,P] — 0, the
Feynman—Garrod representation should provide a useful approximate representation for the propagator for the transversely
inhomogeneous half-space at high frequencies. Thus,

N p 1 N , 172

G *(x,2|0,z,) = llm H dz, H ’_ exp{zk S [Pz —z )]]exp(zkx{-j; 2 {z;,_,)— (pj)z]] ), (4.4)

Jj=1 i=1 =
and following from Egs. (3.22) and (3.23)

k I/N i K2 1/2Yy(N+ 1)/2 1 N /2

G " (x,z]0,z, )= lim Hl dz; (nrxN"“2 [ L 2;7Rl 1] } H{}JHW( [F z 71)] RN“)).

;= N+1 =

(4.5)

The Feynman—Garrod representation (4.4) is not directly based on a large k approximation to £2,,( p,g). Mizrahi has provided
a detailed treatment of the WK B approximation to the propagator for arbitrary Hamiltonian operators.**

In the limit of narrow angle, weak inhomogeneity, and weak gradient, at the level of the ordinary parabolic approxima-
tion,'

24(p.g) =1+ 4{[K%g — 1] - p*}. (4.6)
The corresponding approximation to the propagator following from Eq. (2.8) then takes the form
dp;

(P,)2 Z;t+z;_
T 1 2ol 5, e 50— 5 [ v (B )]]). e

G *(x,2|0,2,) ~ explikx) hm NH H

which, following from the Feynman-Fradkin construction, can be written as
G *(x,2|0,2,) = explikx)® (x,z|0,z,), (4.8)

where @ (x,z/0,z,) is the parabolic propagator of Egs. (2.11) and (2.12). Performing the {p?} integrations in Eq. (4.7) leads to the
Lagrangian path integral representation for the parabolic propagator corresponding to the Feynman construction.*
In the limit of narrow angle and weak gradient for arbitrary field strength,’

§ I K’'(q)
24(pg) =K ~[1’ +— ] (4.9)
n(pq) (g) K 8% Kl
where the superscript primes denote differentiation with respect to the argument. The approximate propagator then follows
from Eq. (2.8) as

N dp? _ N ._ N ; ~
G *(x2/02,)= lim ,I_Il dz, ,1;11 - p’]_( exp[ik;1 [ 7z, —zj_l)]]exp[ k'zx\7 ; [ 2K((P) r(zj)“, (4.10)
where
_ __1 K'g
I'(q)=K{q) %7 K'g) (4.11)

and Z; = }(z; + z; ,) is the average coordinate. A configuration space representation follows from Eq. (4.10) on integrating
over the { p7} variables. This results in the approximate representation

NKKEZ)') [z S —2z P o x e
G *(x,z]0,z,)= hm dz; H ! expiik L 2 K@E)+>=TE)|i, (4.12)
G rzl02,)= ,13, ,Hl i Uk 2 | Ty KB TR TE
which has the form of a Lagrangian path integral following from the quadratic dependence of the “effective Hamiltonian™ on
the p* variable. Equation (4.12) can be shown to be equivalent to a result based upon a direct configuration space derivation in
terms of an appropriate “short-time” propagator.'?
For arbitrary angle in the limit of weak inhomogeneity and gradient,’

&(r) explikqt)
Qulpag) = (1 — P72 Jd & , (4.13)
(Pl =0 =) T T R 1 — (4 1 /2]
where &(t ) is the Fourier transform of the field strength €(g) = K %(g) — 1. The approximate propagator follows from Eq. (2.8) in
the form
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Mz, [ -2 expliF S [ 52

1‘1:-[1 ijl;l1 2r/k exp[z ,—Z’, [ 7tz —ZFI)]]
T X 5 (m2712

xexplik— 3 H[1= (7] + | dt

=1

G +(x,z|0,zx):Nlim

é(r) explikz, 1) }) 414
[1— (g — /2P 2+ [1— (P + /2]
A first-order perturbation evaluation of Eq. (4.14) yields the appropriate Born approximation. The “short-time” propagator

corresponding to Eq. (4.14) takes the form

G (62102 [ dp expliplz — 2]
&(r) explikt Yz + 2')] ]) 4.15)

T _o1/2
Xexp(zk5{(l 77 +fdt 0 /27 1 11 Py

The arbitrary-dimensional generalizations of the path integrals constructed follow immediately. For any given approxi-
mation to {2,,( p,q) a corresponding approximate propagator follows through Eq. (2.8). This would include, for example,
uniform asymptotic treatments, unsymmetrical treatments of the transverse variables in higher spatial dimensions (n > 2), and
the wide-angle rational approximation to the wave equation. For the cases where £2,;( p,¢) can be determined exactly,'
formally exact Hamiltonian phase space path integral representations of the half-space Helmholtz propagator can be con-
structed.

V. DISCUSSION

In the development of extended parabolic wave theories, the path integrals provide the basis to relate dynamical approxi-
mations, the resolution of the square root wave operator, and the concept of an underlying stochastic process. The indirect
Feynman-Fradkin path integrals provide formally exact representations for both the full and half-space Helmholtz propaga-
tors. For the half-space propagation problem, the one-sided Fourier transform of the parabolic (Schridinger) propagator
implicitly contains the proper resolution of the operator-ordering question as expressed through the construction summarized
in Egs. (1.2) and (1.3). This is seen through the equivalence of the Hamiltonian phase space and Feynman—Fradkin representa-

tions for a transversely inhomogeneous medium,

N—1

' T % 7| X o (B tE-n
lim II dzjjl;Ildpj/(Zﬁ/ ) exp zka’1 pj(zj—zj_1)+—]—v— " pj,.._z__

N J ot

im\ ( k )"2 J“” 32 [l/—(( x?
=exp| -—){—] x drr exp|[— {7+ —
€ p( 4)(27 o P2 ;

_ N
Xexp(ik z [pj’.(zj —z;_,)—

~ Nl 2 2

in the two-dimensional notation. Equations (5.1) and (1.3)
can be said to formally accomplish the 7 integration in the
Feynman-Fradkin representation.

Equation (5.1) relates the linear Feynman—Fradkin
Fourier analysis and the nonlinear pseudodifferential analy-
sis. Approximate wave theories can be viewed in this light.
Approximate evaluations of the 7 integral in Eq. (5.1) corre-
spond to appropriate perturbation solutions of the Weyl
composition equation. In the high-frequency limit, the
WKB half-space propagator follows from the Feynman—
Fradkin representation through a functional stationary
phase approximation on the parabolic path integral followed
by an ordinary stationary phase approximation on the re-
sulting 7 integral.>%'%'%2% The corresponding Hamiltonian
phase space path integral analysis involves functional sta-
tionary phase methods in conjunction with Eq. (4.1) and its
extensions.' The ordinary parabolic approximation is a sin-
gular perturbation; it can be viewed as a unidirectional
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T [(pf)2 N V(z, +2_,

N-—1 N dpjz
lim dz, ——
N— jl;L J _,'1:_‘[1 2‘ﬂ'/k

Il

asymptotic expansion of the half-space Feynman-Fradkin
path integral.'>?*% This results in an ordinary stationary
phase approximation on the 7 integral in Eq. (5.1) with the
parabolic propagator assumed slowly varying. This is equi-
valent to Eqgs. (4.6) and (4.7). The limit of narrow angle and
weak gradient for arbitrary field strength, corresponding to
Egs. (4.9) and (4.10), is equivalent to an ordinary stationary
phase treatment of the rintegral accounting for some of the 7
variations associated with the “potential” contribution of
the parabolic propagator. For arbitrary angle in the limit of
weak inhomogeneity and gradient, Eqs. (4.13) and (4. 14) cor-
respond to a full 7 integration over an approximation to the
parabolic propagator. Exactly soluble models provide spe-
cific examples of Eq. (5.1). A more detailed treatment of this
correspondence will be presented elsewhere.

The approximate Feynman-Garrod path integral pro-
vides the basis for the Feynman-DeWitt-Morette path inte-
gral. The form of this symbolic representation suggests the
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formal dynamical character of the propagation theory. The
dynamical basis of the Helmholtz equation can be viewed in
terms of “free particle” motion on an appropriate curved
space or, equivalently, in terms of a stochastic process em-
bodying the fixed “average energy” condition.!® Thus, in the
half-space wave propagation theory, there is no fundamental
dynamical significance attached to a limiting (X — o) “clas-
sical Hamiltonian” function A, ( p,q) as there is in the quan-
tum mechanical theory (# — 0). This is consistent with the
role of the symbol £2y( p,q) as reflected in Eq. (2.7). This
dynamical viewpoint is reinforced by the forms of the Ha-
miltonian phase space representations in the perturbation
limits considered. The narrow-angle theories constructed in
Eqgs. (4.7) and (4.10) are suggestive of weak-coupling ap-
proximations to the Master equation in statistical mechan-
ics, corresponding, respectively, to simple and generalized
diffusion models.! The wide-angle theory of Eq. (4.14) is sug-
gestive of strong-coupling approximations to the Master
equation, specifically, those incorporating large discontin-
uous change.' Moreover, the form of Eq. (4.12) is analogous
to that corresponding to the quantum mechanical motion of
a particle moving in a curved space (the curved space having
been imbedded in an appropriate Cartesian space).®'*!32
The representation presented in Eq. (3.16) is operation-
ally correct; indeed, for any finite NV it expresses a Bessel
function identity. Moreover, it is a well-defined functional of
the path and provides a computational prescription for the
symbolic Feynman-DeWitt-Morette representation ex-
pressed in Eqgs. (2.18)—(2.22) for the homogeneous medium
limit. The connection between Eq. (3.16) and the symbolic
sum over fixed “average energy” paths must result from an
appropriate limiting procedure in the N — o or, functional,
limit. The representation expressed in Eq. (3.10) does not in
an obvious way approach a well-defined functional of the
path in configuration space in the infinite limit. Moreover,
attempts to interpret representations such as Eq. (3.10) as the
discretized form of a Feynman path integral in terms of an
appropriate Lagrangian cannot be carried out in a consistent
manner in general.’>?® Although Klauder,”’ in studying an
elementary model of quantum gravity, was able to proceed
from a path sum in the form expressed by Eq. (3.11) and
directly identify the underlying stochastic process associated
with the model, much of this success apparently lies with the

process ultimately being a Weiner process in one-higher di-
mension and thus readily recognizable, A similar analysis
applied to Eq. (3.10) is not quite so readily transparent.
Equation (3.22), however, for finite &N is a well-defined func-
tional of the path and is suggestive of a formal path integral
in the N — « limit. Equation (4.5) provides an extension to
transversely inhomogeneous media in a high-frequency lim-
it.

There are several final points. Backscatter effects asso-
ciated with a range-dependent refractive index field are ac-
counted for explicitly in the Feynman-Fradkin representa-
tions and symbolically in the Feynman-DeWitt-Morette
representation. Further, for the two-dimensional half-space
problem, conformal mapping techniques reduce range-de-
pendent media to transversely inhomogeneous media for a
special class of refractive index fields.*® The path integral
analysis explicitly introduces into the inverse problem, in a
natural manner, the concept of an underlying stochastic pro-
cess and the notion of strong- and weak-coupling regimes, in
addition to an interpretation in terms of free motion on
curved spaces. The extensions of the factorization analysis to
hyperbolic wave equations in the time domain and to the
vector formulation appropriate for wave propagation in elas-
tic media have been discussed in Paper I. For the acoustic
field coherence function, phase space path integrals can be
constructed in two ways. The bilinear form of the coherence
function immediately allows for a representation as a pro-
duct of two Eq. (2.8) path integrals. The Wigner function, an
appropriate Fourier transform of the coherence function,
satisfies a composition equation of motion in terms of
2,,( p,g).>° The Cohen/Agarwal-Wolf construction then
provides the basis for a phase space representation of the
Wigner function. The path integral representations have im-
mediate application in the theory of wave propagation in
random media.*
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APPENDIX: PARTIAL INTEGRATIONS AND REDUCED REPRESENTATIONS

For the two-dimensional case for an x- or range-independent potential, Eq. (2.15) can be written as

Gx,z|x,z) = =
(XZIX Z) 2k2 j=1 j=1 217'/k

explikS'%)

1 . N—1 N dp? s
ngnw H dz; ] explikS%) | I[ 9 [I

N—1 N p*
J

=1 j=1277'/]—(

X
J— (UNY{EX, [UsP+ 4P+ Vi +20)]}

in an obvious notation. Writing the action analog .S, as
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va—Ep, =X _)=Pnx—pi X+ p7 =PI+ + Py — PPN (A2)
Jj=1
and noting the integral representation of the delta function,
1 [ ,
sipl=o [ deenplizp) (A3
allows the {x } integrations to be carried out giving
—1
G(xz|x,,2,) = —== ex lkS’ f d
wzlxz) = 233 Mzrf ,I_Il ,1__[1 ol JI2)
exp[zk(pNx—— n s)]‘S(Pl - Pz)"' 8(py_1 — P¥) (Ad)
V= (UN{EL, [UPP + e+ Vg +2_,)]}
Carrying out the { p;} integrations results in
-1
G (x,z|x = p explikS
21%,.2,) = 2k2 Nq o 277‘ ,H1 JI:II PkS )
exp[lkp(x —Xx,)] (AS)

xf_wdp(

The remaining p integral is elementary,

E(~ J exp[ikp(x — x,)] _exp[i/—cZ”Z(%—

J=1

=N S e+ Vi +2 1)) -0

g)1/2|x —xs‘] ’

2wl -840 —#)"

’ (A6)

and results in the representation of Eq. (2.23). For the homogeneous medium case, ¥ (x,z) = 0, the same procedures used in
going from Eq. (A1) to Eq. (A5) when applied to Eq. (2.23) lead to the result

1/2fx x, H}

. w k2
Glrslso) = [ ap™ L2 LB

Equation (A7) is just a standard integral representation for the Hankel function H})'(y

eous medium limit is recovered,

G (x.2|x,.z,) = UH Pk [(x — X, + (z — 2,)*]"?).

The three-dimensional case follows in the same manner. When V (x, y,z) =

(A7)

)** and thus the well-known homogen-

(A8)
V ( y,z), the steps going from Eq. (A1) to Eq.

(A6} lead to the two-dimensional version of Eq. (2.23). When V' (x, y,z) = ¥ {z}, application of the steps leading from Eq. (2.23) to

Eq. (A8) results in the representation of Eq. (2.24). For the homogeneous medium,

to Eq. (2.24), noting the result*

fw dp exp[iplz — z,)]HY ((k *

lead to the well-known expression

(1/47R,) exp(ikR ),

zx )2] 1/2'

G (xpz|x,, ys,2,) =
where Ry = [(x = x, P+ (y —p.f + (z —
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The Doppler effect: Now you see it, now you don’t
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Two main classes of problems are identified in the theory of electromagnetic scattering in
velocity-dependent systems. The first involves transformation of space and time coordinates and
field components from the laboratory system of reference to the comoving system of the scatterer,
solution of the scattering problem, and inverse transformations. In general, this method displays
the Doppler frequency shifts. The second class involves the substitution of Minkowski’s
constitutive relations into Maxwell’s equations for harmonic time variation, heuristically
stipulating the absence of Doppler frequency shifts. The interrelation between the two methods is
investigated here. It is argued that the second method is a limiting case for very low, as well as very
high frequencies, and provided the mean square fluctuation of the dielectric constant is small, and
the geometrical boundaries defining the scatterers are fixed. Canonical problems of plane,
cylindrical, and spherical stratification are discussed and analytical results for the scattered fields
are derived. If the parameters of the problem do not meet the above conditions, the first method

should be used, giving rise, in general, to a whole spectrum of frequencies due to the Doppler

effect.

PACS numbers: 03.50.De

INTRODUCTION

Since Doppler’s original work,' no other method has
surpassed his as a tool for remote sensing of velocity by
means of scattering of waves. Substantial progress in the the-
ory of the Doppler effect has been made by Einstein.> A
detailed review is given elsewhere.? The present discussion is
concerned with first-order velocity effects; hence the exact
special relativistic formulas become considerably simpler. In
particular, we address ourselves to the question of remote
sensing of velocity by means of electromagnetic waves, but
the same methods are applicable to other wave phenomena.
In some cases the motion of a single object is probed, as in the
case of a radar observing a moving target. In a variety of
cases the remote sensing concerns the collective behavior of
an assemblage of objects, i.e., a moving medium. For exam-
ple, consider the case of measuring the velocity of falling
raindrops, or the observation of the Doppler effect produced
by particles and irregularities carried along in a moving flu-
id. Subsequently, it is shown that in certain cases the overall
medium effects cancel the Doppler effects produced by indi-
vidual scatterers, but the velocity effects are still present in
the macroscopic constitutive parameters of the medium. It is
precisely this aspect of the problem which motivated the
present study.

Problems involving velocity-dependent wave systems
usually fall into one of two categories. The first class of prob-
lems involves single moving scatterers. The simplest prob-
lem of scattering by a moving plane mirror has been dis-
cussed by Einstein.>* More complicated geometries have
been considered by Le Vine* and Censor,” who also cite ear-
lier work. Characteristically, in problems of this kind, the
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scattered fields are time dependent, such that in the far field
the Doppler effect can be identified, but there are also other
effects, e.g., the time-dependent amplitude due to the chang-
ing distance between the object and the observer. The other
class of problems involves moving media, bounded by sur-
faces whose position in space is fixed, for example, channel
flows. Problems of this kind are usually tackled by inserting
the Minkowski constitutive relations®’ into Maxwell’s equa-
tions for time harmonic variation. The pertinent differential
equations can be solved for special cases, e.g., Refs. 8-11.
For irrotational motion VX v = 0, Censor'* derived a gen-
eral transformation which reduces the equations to the origi-
nal form of the Maxwell equations for media at rest. For
rotating systems Van Bladel'® gives special solutions and
cites previous work. The velocity effects can also be inter-
preted in terms of electric and magnetic sources, as done by
Van Bladel.! In these problems there are no Doppler effects,
although the velocity enters into the results.

Of course, the two categories are based on the same
physical model—Maxwell’s equations coupled with special
relativity.” Therefore, a transition between the two classes of
problems should exist, and criteria for the vanishing of
Doppler effects are expected. To investigate this problem, we
consider the medium as a collection of randomly positioned
scatterers. The collective effects are computed, and the sig-
nificance of the Doppler effect’ is considered.

We start by summarizing the two fundamental ap-
proaches: {1) Maxwell-Minkowski equations for moving
media and (2) scattering by moving objects. To be specific,
the special case of the slab region is discussed in some detail.
Following this, conditions are discussed for which the Max-
well-Minkowski model is valid, and the circumstances when
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itis inapplicable. This points out to the way more complicat-
ed geometries should be handled. For cases where the Max-
well-Minkowski formalism applies, theoretical results are
derived for scattering from nonuniform channel flows and
cylindrically and spherically stratified flows.

THE TWO BASIC APPROACHES

In the “laboratory” or “unprimed” inertial frame of
reference, Maxwell’s equations for sourceless domains are
given by

VXH—%—?=O, V-D =0,

(1)

vxE+ B 0, vB=0,
ar

in the conventional MKS notation.” The equations for the
“comoving” or “primed” frame are given by the same struc-
ture (1), with primed symbols. Special relativity prescribes

r= U-(r — vt),
U=1+(y— 1),
v=v/|v| = v/,
E =V(E+ vXB),

B' = V(B — vXE/c?),
D' = JAD + vXH/c?),
H' = V<H — vXD),

V =yl + (1 — p)¥¥,

t' =yt —rv/c?),
y=(1-v/e)""?

c= (/1060)‘ 1/29

(2)

where I is the idemfactor dyadic and v is the velocity of the
primed system as observed from the unprimed one. Min-
kowski®’ assumed D’ = €E’, B’ = uH' in the comoving sys-
tem of reference, in which the medium is at rest, and used (2)
to express the constitutive relations in terms of the laborato-
ry frame fields. To the first order in v/c and harmonic time
variations e ~ ", (1) becomes

VXH + iweE = — inAXH,
VXE — iopH = — iwAXE,
V-H =u"'V{(AXE),

V-E= — ¢ 'V(AXH),

A = (e — po€olv,

(3)

referred to as the Maxwell-Minkowski equations. Obvious-
ly, (3) applies only to cases where the Doppler effects are
absent or negligible. This is a very strong condition because
we should expect the Doppler effect to appear or vanish as a
result of the geometry and other parameters of a specific
problem, not by axiomatically imposing a constraint on the
solution. Usually it is argued that the assumption of harmon-
ic time variation is valid for media and boundaries whose
properties are time-independent, although velocity is pres-
ent. As shown in the following, this statement is too vague
and might be misleading.

Strictly speaking, (3) applies to constant velocities only.
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This, however, rules out cases of interest involving nonuni-
form motion, such as rotation. Many authors heuristically
stipulate that (3) applies to nonuniform motion as well.?

A general method for solving (3} is to assume the veloc-
ity terms to act as sources.'*'* Since (3) is correct to first
order in v/c, the zero order terms Ey,H, can be found by
taking A = Oin (3). The terms — iwAXH,, — iwAXE,are
then treated as sources to derive the particular solution
E,,H,. Correct to the first order in v/c, the total field is
givenby E=E,+ E,, H=H, + H,. Accordingly, (3) is
recast in the form

VXH + iweE = — inAXH=j,,
VXE —iouyH = ~ ioAXE)= —j,,,
V-H =4~ 'V(AXE)=p""p,.,
VE= — ¢ 'V{(AXH)=¢p,.

(4)

The electric and magnetic sources satisfy the continuity
equations

Ve, — iwp, =0,
(5)
vy,, —iwp,, =0.
The particular solution of (4) (see, for example, Papas'®) is
given by

E, = J-V( ') av | p){f (r,p)i.( plicwop — VXF(I‘,P)'jm( P}

dV ( pT (r.p)in i€ + VXTI (t,p)i.(0)}s

¥i(r)
L(rp)={I+k *VV)G(rp), k*=ow’ue
VXVXT — k=18t —p), (V2+k3)G= —6(r—p),

H, =
(6)

where I is the dyadic Green function corresponding to the
scalar Green function G. Since the integrals (6) involve the
source regions r = p, the question of convergence naturally
arises. We obviate such problems and controversial issues
currently discussed in the literature,'” by treating (6) as a
symbolic form. Actually the integration on G, (6), is per-
formed first and the differential operators VV and V are ap-
plied later. This is tantamount to solving the problem in
terms of a vector potential, for which the convergence of the
integral in the presence of regular j,,j,, can be safely as-
sumed.

The second approach is more general, starting with the
analysis of scattering by a single moving object.” Media are
then constructed by considering ensembles of such objects.
The medium properties are obtained by averaging, and for
some cases the equivalence to the Maxwell-Minkowski
model can be established.

The incident wave exciting the system is

E'- — eiel'k,-'l' — i(uit. (7)

The local coordinate system of the object is defined by
T = — p, where p locates its origin. Translated to this coor-
dinate system, (7) becomes

Ei — eieﬂ(,ﬁpeﬂ(,ﬂr — iwlt’ (8)
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where ¢ = 7. For a moving scatterer we define a system 7,¢’
such that at ¢’ = ¢ = 0, the origins ¥ =F =0, coincide. In
the comoving system 7,t ' we have according to (2), to first
order in v/c,
E = e,eikfpeik;-i' —iwft’
[ ] ’

o] =w; — kv,

k! =k, —w,v/c%

o - 9)
r=F—w,

t=1—Tv/c,

This p_lane wave excites the object, such that in the far field in
the ¥',¢ ' frame of reference we have
ik 17 — iwt’

E; = efe'kr%_r kz ’wz ’e )’ (10)

H

where e; = |e/|, and the Green function is chosen as

P /4x7;; hence f has the dimension of distance. The scat-
tering amplitude f depends on the directions of incidence and
observation k!,F’, respectively, on the frequency of excitation
o], and on the direction of polarization &;. The correspond-
ing scattered field E, in ¥,f is given,” correct to first order in
the velocity, as

E, = E; — vXT' XE!/c. (11)
In order to deal with a collection of scatterers and use (10),
assume that the objects are in the far field with respect to
each other, and that single scattering only is involved. After
expressing (11) in terms of r,t coordinates, we derive an ex-
plicit expression in p. Now the ensemble properties must be
introduced, e.g., the density a( p). The average field is ob-
tained according to

(E,) = f dv ( pJE,( pla( p). (12)

Similarly, other statistical moments can be computed.'®'* It
will be shown that in certain cases the Doppler effect vanish-
es, facilitating a direct comparison with the results of the
Maxwell-Minkowski model (6). In other cases the Doppler
effect does not vanish, demonstrating the inadequacy of the
Maxwell-Minkowski model for such problems.

SCATTERING FROM A SLAB REGION

Quantitative results for comparing the two methods are
obtained by analyzing the relatively simple problem of a slab
region geometry. The slab region is in the xz plane, and a thin
slab of thickness 4y is considered, in order to simplify the
analysis. The time-independent velocity field v( p) is defined
in the xz plane. The integration involves the position vector
p(€.$), and E, ,H, are replaced by E, /4y,H, /Ay to ac-
count for the integration in the y direction. The incident
wave provides the excitation E, = ¢,¢™* ~“’, Assuming
H =, everywhere, we have from the Maxwell-Minkowski
model (4)
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lk e —pl

2 (kW) [ d e S iopol,
4y 4r|r —p|
lk,lr el
—vxfdgdg
4r|r —Pl

(13)
Je = — ile — €)v( p)Xk; X E,,
= ioptol€ — €o)¥( p) X Ey,

and the corresponding expression for H , /A4y is given by
inspection of (6). Throughout space (13) yields the harmonic
time variation e ~ “*, with the frequency @ of the incident
wave. If v( p) is a rapidly changing function in the xz plane,
the integral cannot be expected to yield transmitted and re-
flected plane waves in the forward and specular reflection
directions. For such a case one would expect Doppler effects,
discussed in the context of the second method mentioned
above. On the other hand, if v( p) is a slowly varying function
and k; is large, the stationary phase approximation can be
used to compute (13) (e.g., see Twersky'):

G (p.Je™ "

K [ggg( Ps)g;g( ps) _gég( ps) ]”2
(14)

f G plesP dg dt ~

d
a_gg( ps) =8:(p)=0, gAp)=0,

where p, are the stationary points. For the present case kg in
(14) is given by

kg(p)=kb+ks+klx—EV+E—-E5)P1VA
xg(p,)=k.x+kztky=k,
ki=ki+k;+kI=k2+k;,
(15)
ky _ y k _ r—p;
*k, [(x—g,)2+(z—§)2]”2’ &k r—p,l
k; 2mi kf._ i

(8:c8:c — 821"

"
Returning to (14), we now have

amle —p,| ky  2ky

By _fopole — &) ,—ion
Ay 2k,

X [(7+ g—)-e "vxk; Xe; — iVe™ T vXe, ]

— l'a),uo(E —_ 60) el‘ki-r — iwt
2k

v

-5

Similarly (6) becomes

E.IA= i€ — &) el‘kz-r—imt[ —(j_ k. k, )
4y 2k k2

¥

)-vxk,-Xe,- +k, XVXe,}. {16)

k2vxe, +k, ><v><k,~><e,-]- (17)

As expected, we have forward propagation and specular re-
flection. The results (16) and (17) show that no depolariza-
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tion occurs in this problem. For normal incidence the
expression in braces in (16) and (17) vanishes, and with k,—0
the fields become indeterminate. Note that (15) prescribes

v(p) = vir — (k,/k)|r — p,]); (18)
hence the field at r is due to the velocity at p, such that the ray
k, andr — p, are on the same line.

Treating the problem as a collection of moving scat-
terers and solving by successive transformations and inte-
gration, as indicated by (8)—(12), (12) now becomes

ikep + k7 — ot

(E.) =fd§d§e,- ¢

477
XMp(f—vnﬂxﬁxf) (19)

which we have to express in terms of r,7 coordinates before
integrating. First, the transformation of the phase (19)is con-
sidered. For an observer along the ' direction, we have
kIFF — ot =k T—o,l
k, = k¥ + o/v/c,

~ 20
w, = w](1 + (vT)/c) (20)

= w,(1 — (vk, /e + (vi)/c),

to the first order in v/c. This result displays the direction-
dependent Doppler effect, which in general conflicts with
the result of the Maxwell-Minkowski model. In order to
contrast (19) with (16), we assume that the stationary phase
approximation applies to (19). Usingz = t,T =r — p, and (2)
yields, to first order in v/c,
1 =1—(tv)/c =1t — (V)P +(pV)/c? =1+ (pV)/c?,
(21)

and since k, = k; + (@/*v)/c?, we obtain in (19)

Kep—owit' =klip— ot (22)
Consequently, instead of xg in (14) we now deal with

KiE+k G+KIIX—EF+(E =8P +p7°1"2 (23)
In view of the identical structure, all results through (15)
follow for the present stationary phase approximation, with
properly primed symbols. For velocities v( p) contained in
the xz plane there is no Doppler effect in the forward and
specular directions. The velocity effect on the incident
wave’s amplitude (9) is cancelled by the velocity effect on the
outgoing wave, in (19). However, not all velocity effects van-
ish, because in its comoving frame of reference, the object is
excited by a wave (9), whose various parameters are velocity-
dependent. To the first order in the velocity, in (19)

:-r 1 ’ - af

f(l‘ 7ki’wi1ei)=f\v=0 +E v=0""s (24)
denoting an expression about v = 0. The details of the sym-
bolic form (24) may be very complicated. A simple manifes-
tation of the velocity effect is the change in the excitation
frequency; hence (24) will contain a term 3 £/9w;|, _ ok, *v.
Since the present result contains no Doppler frequency shifts
in the spectrum of the scattered field, the results can be com-
pared with those of the Maxwell-Minkowski formalism
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(16),(17). However, in general, (19) contains more informa-
tion, displaying the Doppler effects for various geometries
and directions of observation. Nevertheless, it is shown sub-
sequently that analytical solutions derived from the Max-
well-Minkowski formalism are relatively easy to obtain. The
method is therefore of interest, as long as the criteria for its
validity are met. In the next section these criteria are consid-
ered.

DISCUSSION AND GENERAL OBSERVATIONS

For many decades the subject of electrodynamics in the
presence of moving systems has been considered to be of
purely academic interest. Nowadays the probing of motion
by means of electromagnetic radiation is becoming one of the
most important tools for remote sensing, e.g., for measure-
ment of wind velocity in the atmosphere, a key parameter in
meteorology. With the advent of remote sensing methods
from space platforms this subject becomes even more timely.
It is well known that Doppler frequency shifts are amenable
to accurate measurements, and the wide use of this method is
evident from the literature. It is therefore important to know
when the effect is detectible, and under what circumstances
it is expected to vanish. On the other hand, detection of ve-
locity effects in the absence of Doppler frequency shifts have
been practically neglected thus far, but might become an
important engineering method in the future. Recently,”® one
such method for wind velocity measurement has been pro-
posed. The implementation of this particular method de-
pends on the availability of lasers in space for remote sensing
purposes. It is therefore worthwhile to derive solutions for
various canonical problems, using the Maxwell-Minkowski
model. Such problems are considered in subsequent sections.

The analysis of the slab region, given above, would sug-
gest that Doppler effects vanish at high frequencies, since the
scattered waves are in the forward and specular directions.
However, this argument is somewhat oversimplified. Many
problems can be defined where the motion is not parallel to
the boundaries; yet the boundaries are at rest with respect to
the observer. The idea of such flows seems to be nonphysical
at a first glance. As an example, consider a perfectly con-
ducting plane with an aperture, backed by a moving medi-
um. For all practical purposes, the motion can be considered
to terminate on the boundaries of the aperture. Such prob-
lems with a jump discontinuity in the velocity have been
considered previously.?' Depending on the geometry of the
aperture and the frequency in a given direction, a far field
radiation pattern exists for the energy scattered by the aper-
ture. If the dimensions of the aperture are on the order of a
wavelength, the stationary phase method cannot be used, as
in the above discussion. Will there be Doppler effects, or can
we discuss the problem in terms of the Maxwell-Minkowski
formalism? Or consider the problem of a system with spheri-
cally stratified rotational velocity field—which method
should be used? Doppler spectra are usually present when
particles or irregularities are in motion. Intuition therefore
suggests that Doppler effects will be present when there are
strong fluctuations in the dielectric constant of the system,
provided the typical length scales are not too small in com-
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parison to wavelength, such that we have sufficient resolu-
tion. To put these ideas in a more concise form, scattering by
random ensembles and the associated Wiener—Khintchine
relations'®2? must be considered. Essentially we define

x= +xr (25)
where (y ) is the average value of the susceptibility y and y,
is the fluctuating part, such that (y,) = 0. Hence

=" —)? (26)
is proportional to the power scattering coefficient, describ-
ing the directional properties of the scattering process; ac-
cording to the Wiener—Khintchine relations the power scat-
tering coefficient is defined as the Fourier transform of the
cross correlation function (1/V) f dV (p) y (ply *(p + 1)
For long wavelength the scattering pattern is that of a dipole,
and the power is proportional to (y;). However, there ap-
pears also a proportionality factor & * (typical to Rayleigh
scattering); hence the scattered power is small and in this
regime the Doppler effect is negligible, as assumed in the
analysis of Van Bladel.' In the limit of short wavelengths
the power still depends on (y?), and is now independent of
frequency, but the scattering pattern is sharply peaked in the
forward direction, for which the Doppler effect vanishes.
This leaves a large domain where the effect of wavelength,
geometry, and mean square fluctuation ( )(}) combine to
produce significant Doppler effects. For such problems the
Maxwell-Minkowski method is inapplicable. This is the re-
gime where velocity profiles can be measured by means of
the Doppler broadening spectrum.”?

SIMPLE NONUNIFORM FLOW PROBLEMS

For the range of parameters where the Maxwell-Min-
kowski formalism applies, the velocity effects can be found
by solving (6). Simple examples are given in the present and
next sections. The simplest example is provided by a plane
stratified nonuniformly moving region, where € is identical
throughout space, for which a scalar formalism is adequate.
Later we consider a circular cylindrical region with circular-
ly stratified motion along the generator. The simple case of a
rigidly moving circular cylinder has been considered be-
fore.*?*?> The case of nonuniform motion is conveniently
analyzed by solving (6). The presence of cross polarization
effects, which has been noticed in the past,? is verified in the
present solution. The problem of rotating cylindrical strata,
involving nonuniform angular velocity is considered too.
Special cases of uniform rotation are discussed and cited by
Van Bladel.'® The problem of the spherically stratified non-
uniform flows, which is mathematically more complicated,
is discussed in a separate section.

Plane stratified motion

The incident wave (7) is polarized in the Z direction,
e, = ¢;Z, and K; is in the xy plane. Since there is no Doppler
effect, e ~ " is suppressed. Throughout space, €,u, are con-
stants. The motion v = Xu( y) is confined to the region
— a<y<a. For the present case (6) involves integrals of the

form
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© kR i
| dedgan ety

_ b k[T ikl + |y — i)
=—ce dn v(n)e . 27
%, f_w 7 v(7) (27)

It is noted that the integration of (27) is identical to the result
obtained by using the leading term of the stationary phase
approximation, as in (14). For the present case (6),(13) yield

wxthy [ ) B
E, = —eoue —¢) e"‘*"k_"f dny v(p)e™7 ¥ )
'y —a
ik x + ik Y
=“'A[e - ”f dn vln)

et [ anofe™), (28
y

andk, XE, yields H,. The velocity-induced scattering
produces two waves, propagating in the direction of inci-
dence and specular reflection. In the region y>a the first

integral contributes {?_, dn v(7), and the second integral

vanishes. The reflected wave contains the extra phase factor

¢ and in the region y<a the first integral vanishes, while

the lower limit of the second integral is — a. Note that for a
symmetrical flow v(n} = v( — 7), for example, the Poiseuille
flow, there is no velocity effect in the y>a region.

For practical applications, the question of remote sens-
ing of the velocity profile must be considered. Obviously in
the forward direction only an average effect is measured.
The backscattered wave will be easier to measure, because of
the absence of the incident wave in this direction. Further-
more, by extending the limits of the second integral to infin-
ity it becomes a Fourier transform of the velocity field. By
probing the moving region for a range of k,,, either by chang-
ing frequency or the direction of incidence, v(7) can be found
by performing the inverse Fourier transformation.

Cylindrical motion along the axis

Consider a radially symmetrical flow directed along the
cylindrical axis

v = a(r). (29)
The corresponding problems for rigidly moving circular cyl-
inders have been analyzed*** by using the relativistic trans-
formations. The incident, scattered, and the zero orderinv/c
internal waves are given by

oo

2e,e™ = 2e, E "J, (krje™?,
e, ¥ i"a,H,(krje™, (30)

E, =z, Y i"b,,J,, (krle™,

where J,, denotes the Bessel functions, H,, are the Hankel
functions of the first kind, and « characterizes the internal
domain. The coefficients a,,,b,, are computed by applying
the boundary conditions to the zero order fields, i.e.,

I (ka) +a, H, (ka) = b,J,(xa),
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(31)
kJ ! .(ka)+ kb, H ', (ka) = «b,,J |, (ka),
where the prime denotes differentiation with respect to the

argument. Hence a,,,b,, are considered to be known quanti-
ties. The two-dimensional Green function for this case?®

. ; - |
G=J“H0(K|l‘—p|):zeim(¢fv)[ m (KT) m(KP) r<p
41 p H, (knJ,(kp) r>p,

(32)

(V2 + k)G = —8(r — p),
where p = p( p,v),r = r{r,¢ ). For the present case j,, = Oand
j. 1s in the cross-sectional plane. By inspection of (6) it be-
comes clear that H , is in the Z direction; hence it is easier to
compute. On the boundary r = q,H, must be equal to the
external H¢, field in the 2 direction, induced by the velocity.
Since the incident wave has no field along the axis, the fol-
lowing boundary value problem is very simple. The velocity
induced E¢, field in the external domain can be derived from
VXH, = — iwe, E,, where ¢, pertains to this domain. The
internal field E; can be computed directly or by exploiting
E:, and the Maxwell equation VX H, + iweE, = j, inside
the moving medium. From the definition of j, and
VX E, = iwu,H, we have

je(p)= —v(plele — &)
X ;(% ind, (kp) + f)KJ;(Kp))i"b,, e, (33)

Before attempting to integrate (6), it must be noted that v,p
are functions of v; hence they must be first expressed in terms
of the constant Cartesian unit vectors X, ¥ and sin v, cos v.
By recasting sin v, cos vin terms of e”,e ~ " and adjusting the
summation index of (33), we again derive a series in ¢, In (6)
we use the orthogonality relation §3"d v '~ ™ =4, 27
and then work backwards from X,§ to £, representation.
The total effect of this detour is identical to assuming

f = p,¢ = ¥ in (33). Finally we obtain

H,(r)= — e }(e— € Y i"*'mb,F,(re™, O0<r<a,

F(r)=J 1, (kr\ly(r) + H , (kr)Iy(r) + J . (k1) L5(r)
+ H,, (kr)Ly(r),

10)= [ Holepl ot p) .

1) = [ 3wt p) .

(34)
1 a
1=~ L [ Ho ool Lot pl o .
1 ( ,
101 = =+ [ Jtepl ool ) p dp.
(4]
On the boundary we have I, = I, =0 and
H (@)= —ze; } (€ — € Y "t ' mb,F,(a)e™,
(35)
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F,(a) = H, (ka)l)(a) + H,, (xa)l(a),

and I,,1, follow from (34) by extending the upper limit to a.
The continuity of the tangential H field at the boundary pre-
scribes in the external domain

H, =23 i"c, H,kre™, (36)

and by equating (35),(36) at » = a the coefficients ¢,, are
found. The mate EY, can be found from Maxwell’s equations
in the external domain; hence the solution is complete. From
the point of view of measurements (35) is interesting because
the velocity induced field is cross polarized with respect to
the zero order fields; hence its detection and measurement is
easier to perform.

Cylindrically stratified rotation
Another interesting class of problems is suggested by

V= v(r)(f), (37)
describing a cylindrically stratified rotating system. Inas-
much as the rotation is not uniform, the problem cannot be
approached by transforming to rotating coordinates."* For
the present case we have

. A l'm m imy

i p) = Zle — €gle;v(p) > 71," (kp)"b,, €™,

m

(38)
i ( p) = piopole — olev(p) Y b, J. (Kp)e™.
Using (32),(38) in (6) yields
E, (1) = 2 iople — €) % S i+ imb, F, (Re'™,
F,(r)=J,knl, + H,, k"l
(39)

1= [ Hotuol oot )1+ £) dp,

I, = f J,,, (k) p)(l + ﬁ) dp.
0 r
At the boundary E, (a) is obtained, and, by equating to the
corresponding external field

B =2e, 3 i"d,,H,(krle™ (40)

at r = a, the coefficients d,,, are determined. The mate HY,
follows from the Maxwell equations. The direct direction of
polarization is conserved in this problem.

SPHERICALLY STRATIFIED ROTATING MEDIA

We consider now the Mie theory for scattering by
spherically stratified rotating media. A special case for a ri-
gidly rotating sphere has been recently discussed by De Zut-
ter.?” In general the velocity is given by

v = £2(r) sin 6, (41)

where £2 (r) is the angular velocity of a shell of radius r rotat-
ing about the polar axis Z of a spherical coordinate system.
Here @ is the polar angle, measured off the Z axis, and ¢ is the
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azimuthal direction, with f',ﬁ,(i) defining a local right-handed
Cartesian system. Again, this problem cannot be solved by
transition to rotating coordinates because the rotation is
nonuniform. Scattering by a sphere is a classical problem,”®
the notation used here is essentially as in Twersky,”’ who
relates his to Morse and Feshbach? and others. The Green
function for this geometry is

7 ZL’:; s ,,,5-:,,. [M,, (M., _ . (p)

2n+1

+ N (N, ()] (= 1) T,

r>p,

(42)
where M,N are defined in the Appendix, superscript 1 indi-
cates that the vector spherical waves involve j, the regular
spherical Bessel functions; otherwise, the spherical Hankel
functions %, are used. For 7 <p r and p in (42) are inter-
changed. The solution of the velocity independent part of the
problem is described in detail by Stratton,® for example. In
the interior domain 7 < a the fields are given by

EO = Z [cnm M:mz + bnm erim ]’
n,m (43)

£ S [6,, ML, + €, Ni ],

iopy mm
where b,,,,c,,, are assumed to be known coefficients and
Jjn(kr) involves «, the parameter characterizing the interior of
the sphere. In order to evaluate the source terms j,.j,,, we
need to know sin $ XN, . It is easy to see from the Appen-
dix that sin Qci)xC:," = — im P7; hence

VXM = — r2(r), (kr)imP({)=a,(n,m,r)P}(F). (44)
Similarly, we wish to recast
vXN.,. = [2(n/x){nn + 1), (xr)® sin 6 7(F)
— 0y [K7j,(kr)]Rsin 63y Y(E)},  (45)

in terms of vector spherical harmonics. For the f component
we use recurrence relations for associated Legendre polyno-
mials,?® deriving

H, =

f'f.va}lm = az(n’m’r)i\-.P'n"— 1 + a3(”’m7r)fl'P:1n+ 12

a, = [2(r)/&] 3., [«1j, (k)] (n + m)(n + 1)/(2n + 1),
46)
a,= — [2(r/x] 3, [kr),(kr)](n —m + 1)n/(2n + 1). (

The term — dA) sin 8 Y '(f) has been expressed in terms of
C7, B before.*® This is used to express the 0 component of
(45) in terms of vector spherical harmonics. The result is
readily verified by using the definitions of the Appendix,
recurrence relations for P and the differential equation sa-
tisfying pJ":

éé'va,l,m = a,{n,m,r\B7_,
+ aS(n’m’r)B nm+ 1 + aé(”’m’r)cr'n"’
a, = [2(r)/k]n(n + 1), (kr)in + 1)(n + m)/(2n + 1),
as= — [2()/klnln + 1y, (&r)n —m + U)n/2n + 1), (47)
ae= — [2(1/k]ln(n + 1), (xkr)im.

Therefore, the sources are given by
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im = lougle — ) > [BiC + BB} + B:p7 ],

Bi\(n,m,r) = b,,,asn,m,r), (48)

Byn,m,r) = b, + Lm a,(n + Lm,r) + b,_ ],ma5(n - Lm,r),
B3(n’m’r) = cnmal(nsm’r) + bn + 1,ma2(” + Lm,p)
+b,_ | ,asn—1mr)

Similarly
jo= —xle—e) 3 [nCr+ 7Bl +¥:Pr],  (49)

where ¥,,7,,¥; are obtained from 3,,5,,5; (48) by interchang-
ing b,,, and c,,,.

We are now ready to represent E , ,H , in a closed, al-
though highly compacted manner. In preparation for this we
define

W, =(—1)

nm

m 2n+1
nin + 1j
Uy =y,C; + BB} + Bsp),

(M), +N...),

™ m 50
Vo =B.C] + 7B + v %0
We now exploit the orthogonality relations (Appendix), and
VXM = kN, VXN = «M, to obtain

2
E, = k____a)/,to (€ — &)
T

x { 3 Monfr) [ Wo_(pHUZL 9}V ()

Nl [ W, gV v p)]. 51)

By extending the integration limit top = q, thefieldatr = a
is obtained. The detailed manipulations of (51), using ortho-
gonality relations of the Appendix, reduce it to an integra-
tion over p. The details are not shown here, in the interest of
saving space. A similar expression is obtained for H, . The
solution (51) can be rewritten in the form

EA = z (enrn Mnm +f;tm Nnm )’ (52)

where the coefficients e, £, are derived by computing the
integrals (51). The field at r = g in directions 9,¢ is equated
to the corresponding tangential components of E, ,

E, =S €M + 40N, (53)

in the external domain at the boundary. From this the coeffi-
cients g,,..,h,,, are found. Using Maxwell’s equation
VXE, = iou,H;, the mate H, field is derived. Therefore,
the problem is solved.

Although (41) specializes the problem to rotation about
the polar axis, arbitrary directions can be considered, using
addition theorems for spherical vector waves, as given by
Edmonds®! and Stein.*
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APPENDIX
Vector spherical waves and harmonics are defined:
M, (r) = &, (kr)CT(F),

mgay may | A _at_ . r mia
Cr(f) = —rXVY () = (9 Sin @ ¢99)Yn(f),
N.,..(r) = {n{n + D&, (knPJ(r)
+ Oy, [ krh, (kr) | B(#)}/kr,
PY(E) =Y 7'(F),
B71e) = excri) = (6 20 183, ) v 7,
sin @
Y 7(#) = P™(cos § )e™?,
Y, " =(—1)"[(n —m}/(n+ m)!)P"(cos 8 )",

where d, denotes d /3¢, etc., P 7 are the associated Legendre
functions, and A,, are the spherical Hankel functions.
Orthogonality relations:

P7B™ = P™C" = B™C" =0,
f C ™ CtdN
= J B ™B: d2 = nin + 1) f P, ™P* dQ

nn + 1)
™ 1’

217 T
fdﬂ:f d¢f sin 6 d6.
(0] 0

=(— 1y"4x85,,6
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The restriction of the J-matrix scattering wave function to the subspace where the potential is
nonzero is used to define a reproducing kernel in the energy parameters. The values of the kernel
at the positive Harris energy eigenvalues are shown to be related to the numerical weights at these

eigenvalues.

PACS numbers: 03.65.Nk, 02.60. + y

I. INTRODUCTION

It has long been known'™ that the partial wave kinetic
energy operator H° = — 1d?/dr* + [(I + 1)/2r hasatridia-
gonal representation in the complete Slater” or oscillator ba-
sisset {|@, )] _, with fixed scale parameter. This has meant
that when the eigenvector solution |y °) to the Schrédinger
equation J (E'}|y°) = (H° — E}[y°) = 0is expanded in
terms of the basis, i.e., [y °) = £7_,2,|d. ), theset {z, }=_,
satisfies the three-term recursion relation J, , _,z, _,

+Jpnzy + w12, .1 = 0. Due to the fact that this rela-
tion is one basic starting point of the theory of orthogonal
polynomials, the tools of this theory have been exploited* to
characterize the solution [y °).

One immediate result is that two independent solutions
z, =35, and z, = ¢, exist such that .#(r) = (rly )

=27 05,(rl¢,) and € (1) = (r|x3) = 27_,¢&, (7|, ) be-
have asymptotically sinelike and cosinelike, respectively.
Another result has been that if H° is restricted to the sub-
space spanned by the finite set {|[#, )} ¥ =2, then a set of ei-
genvectors may be taken to be {|¥(E2))} ¥ such that
|PUES)) = ZNZ5(EQ)|¢, ), where {EX|Y_ [ are the N ze-
ros of the function 5 (E ). Further, it has been shown* that
((WOUE)|PUES)) "] is the set of numerical weights asso-
ciated with the set of abscissa {£]}. This fact has been uti-
lized with success in conjunction with the Fredholm tech-
nique to do scattering calculations using a finite matrix
representation of both the given potential ¥ as well as the
unperturbed Hamiltonian H °.

On the other hand, the J-matrix®’ method works with a
complete set of basis vectors {|d, )} =_, since H° can be
solved exactly in the entire space. Only the given potential,
however, needs to be restricted to the finite subspace U,
spanned by {|#, )}~ 0. If P, is the projection operator® on
Uy, then the eigenvector solution to the model Schrédinger
equation, (H°® 4 P§, VP, )lx) = E |y), can be written as
X = ZNAT(E)Nd,) + 27 w6, + 8,)/(1 + 1)2]4,)
with 7 being interpreted as the exact tangent of the phase shift
caused by the potential (P }v,, VP,).IfT,(E)is defined to be
(5, + fc,)/(1 + £3)"* for >N, then the N Harris® energy
eigenvalues of the restricted full Hamiltonian P}, (5 °
+ V )Py arethe N zeros, (E, } Y=, of Ty (E ). With this simi-

* Present address: Physics Department, University of Petroleum and Min-
erals, Dhahran, Saudi Arabia.

317 J. Math. Phys. 25 (2), February 1984

0022-2488/84/020317-06$02.50

larity between T, and §, and the fact that T,(E) =3, (E)
when ¥ = 0, the question is asked [with | ¥ (E,))
=3N_(T(E,)|¢,)] iftheset ((¥(E,)|¥(E,))"}Y_, can
be interpreted as the numerical weights associated with the
set {E_}) .

In this paper we will answer in the positive the question
posed above. In Sec. II we give a brief review of the J-matrix
method to define the terms used subsequently. In Sec. I1I we
establish that (¥ (E )|¥ (E ")) is a reproducing kernel and in-
vestigate some of its special values and limit behavior. In
particular, with the help of a suitably defined spectral func-
tion we show that (@(Eq)f @(Eq)) ~1 can indeed be inter-
preted as the numerical weights associated with the positive
energy subset of { £, } Y ~/'. Finally, in conjunction with the
“inverse” Fredholm determinant, we present in Sec. IV a
numerical example using a one-term separable Yukawa po-
tential'® that possesses a bound state, We compare the
weight computed using the J-matrix reproducing kernel
with those obtained by the Heller derivative rule.!' We com-
pare the phase shift using the two sets of weights with the
exact answer.

. REVIEW OF THE J-MATRIX METHOD

This method employs®’ as a complete set of basis vec-
tors, {|d, )}, either the Slater set

G, (N=A(rlg,)=C"T"e S LYTNE), n=0,1,...
or the oscillator set

(2.1)

$u(r) = (rle,) =& e LT VAER), n=01,.., (22)
where { = Ar and 4 is a free scaling parameter. The set
{16.)] 7. is defined as the dual basis, i.e.,

(¢fl [&m ) = (&n |¢m ) = anm N (2'3)

Given a short-range radial potential ¥, the J-matrix method
finds the exact scattering solution to the model potential ¥
derived by restricting V to the subspace Uy spanned by the
finite set {|@, )} Zo:

Vir)=P} VPy, (2.4)
where
Py =3 16l 2.5)

is the projection operator® on the subspace U, . The adjoint
operator has a similar interpretation in the dual space.
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The energy eigenvector |y (E)) which satisfies the
Schrodinger equation

(Hy+V—E)|ylE)) =0 (2.6)

has the representation
Y E) =1FE) + S (T—l—};/—z(s +12,)19,).
" (2.7)

Here 5, and ¢, are the components of the eigenvector of the
free Hamiltonian which behave asymptotically sinelike and
cosinelike, respectively; i.e.,

F= 3, 5(E6. 00 ~ =i (kr— 7). e
~ 2 Ir
12 (r)—”g0 E(E )b () ~ /77; (kr— 7). (2.8b)
The vector | ¥ (E)) is written as

PED=3 [6.)T.IE) 2.9)

n=0
with restriction on T, (E ) so as to make |y (E )) normalized in
the sense that
(Y (E)YE") =6E—~E"). (2.10)

With 7 (E ) as the tangent of the phase shift caused by V,
(r|y (E)) behaves asymptotically as

(i (E) ~ |2 sin(kr _I 5). 2.11)
r—oo 7Tk 2
The J-matrix method solves for the set of quantities {#(£),
T,(E)}Y -, with the following explicit results®'>'3:
i) 1(E)= — SNfltb +8n_1, N EVy _NE By{E)
Cn_upy T8N 1w EWy MENNE )
2.12)
(i) T,(E)= —8un-1 (ENy 1 nE)TY(E), (2.13a)
where J = H® — E is the J-matrix, and
Bom = (&, | [P+ VIPy] "6,0), (2.13b)
To(E)=(1+ t}E) Gy (E)+ t(ERN(E). (2.14)
More explicitly, if we define
N-—-1
¥y =Y lo.00, (2.15)
n=0
such that
(¥, \PLWJ+ VIPy|¥,)=ES,, (2.16)
then
Nor P
G (E) = g 2.17
8um(E) q; E_F (2.17)

We note in passing that 7', vanishes at the Harris energy
eigenvalues, i.e.,

Ty(E,) = 0. (2.18)

It can be seen that |¥(E)) is the infinite-dimensional
analog (with continuous energy parameter) to the finite-di-
mensional | ¥, ). Furthermore, there is a corresponding rela-
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tionship between T, (E ) and I, ; which can be seen clearly by
using Eq. (2.15) twice to first obtain

Tn (E) — én,Nf 1 (E)
Th(E) &y i(E)
then by taking the limit as E—E_, and using Eq. (2.13) to get

(2.19)

T.\E,) = ——r""’ . (2.20)
Tm (Eq] Fm,q
This means that
Fn,q _ Fm.q

= =d, {2.21)
Tn (Eq) Tm (Eq)

is dependent only on ¢. This result has the interesting conse-
quence that

|¥,)=d,|P(E,) (2.22)
It will be shown in Sec. I1I that d, is related to the numerical
weightsat E = E_. Itis useful tofinally note that the Green’s
matrix elements g, (£ ) of Eq. (2.17) can now be written as

oy TIE)T,(E))
Py 2k

lil. THE REPRODUCING KERNEL

Before we proceed to define the reproducing kernel, dis-
cuss its properties, and find its values in special cases, it is
useful to introduce some quantities in the dual space. Corre-
sponding to T,,(E ), which can be written

gumlE) = (2.23)

((bn‘w > - (¢n|P1V ]X ) (3'1)
we define
E)=(¥(E)|$,) = (X(E)|P}|d.). (3.2)
It is then clear that
_ N
TH(E): z Tm(E)Smn’ (33)
m = Q
where the overlap matrix S,,, is given by
mn <¢m |¢n ) (34)
Also, corresponding to I, ,, we define
N -1
qu = 2 rnqun * (35)
n =0
It then follows that
N—1
> VgL ng = Sun (3.6)
¢g=0
and
N .
z ?/mqrmq' = 6qq" (37)
m=0

signifying the orthogonality of the matrix which diagona-
lizes [P}, (J + V)Py ] in the subspace Uy.

A. Definition and properties of the reproducing kernel

The reproducing kernel Ky (E, E ) is defined as
Ky(E,E')=(V(E)|¥(E"). (3.8)
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From the definition it is clear that K (E, E ') is symmetric;
i.e.,

KyE,E')=Ky(E',E). (3.9)
More explicitly, we have
N—1__
K E,E)= Z T.ET (E"). (3.10)
n=20

Using the definition for T, and 7, and the fact that Py, is

idempotent, we immediately have

Ky(E, E') = (Y(E)|PLPyIXE"), (3.11)
which with the help of the orthogonality relation (2.10)
yields the result

lim Ky(E,E')=8(E—E’). (3.12)
N-vo0

To obtain a closed form expression for Ky (E, E’), we start
with the expression (3.10) and use the explicit form of T, (£')
and relation (2.13a) to get

KB E)=[Jy_.n E)][Jn nETYE")]
<y i Zrx A E)SnBo 1 (E).
T (3.13)

Further simplification of Eq. (3.13) results from using the
explicit expression (2.17) for g, ,,(E ) and the orthogonality
relation (3.7) to obtain

KyE E')= [Jy  ~ENTYE) Iy 1 pE)TH(E)]
Nt rfv— g
quo E, _EJE, —E . (3.14)
The denominator in the sum can be factored, resulting in
Ky(E, E’)
= [InNENTNE)] [y i nE)T(E)]
X[8v- 1w (E)—8v_1n EV/IE—E').

This is the first closed form expression for Ky (E, E’). An-
other form results from using Eq. (2.13a). Thus

KN(ErE’): [T 1(E )‘IerN(E) N(E)
— Ty _(EWy_ 1 NE’

EV/IE—-E’]

{3.15)
This is the equivalent expression to the Christoffel-Darboux
formula usually encountered in the theory of orthogonal
polynomials.

B. Special cases of K, (£, £)

Using the expression derived in the previous subsection
and taking the appropriate limit when necessary we can easi-
ly derive the following special values for K y(E, E'):

(i) Ky(E, E) = W(Ty _((E),Jn_ 1 (ENTy(E)), (3.16)
where W is the Wronskian. On the other hand, Eq. (3.14)
yields

2

(E,E)=[Jy_ nE)Ty(E Lvorg 3.17
KNE, E)= [Jy_ 1 n(E) T )]qzo(E zp B
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which is a positive definite quantity. Furthermore, noting
Eq. (2.13a), we may write
Ty_.(E)

2N-1 FZ

Ky(E E)= [——— B T (3.18)
gv_in_1E)] 4 O(E—E)
(i) Ky(E, E))=Ty_([E;Ny-1nE)TN(E)(E - E,);
(3.19)
(i) Ky(E,, E,)=0 if E,#E_; (3.20)
(iv) KN(Eq’ Eq) =Tn_, (Eq)JN— ],N(Eq)
a
(EE TN(E)) L (3.21)

which results from (3.19) by taking the appropriate limit.
Furthermore by taking the limit of (3.18) as E—E, we obtain

Ky(Ep E))=Th_1(EVT 1, (3.22)
which can be cast in the form
o B =y |WEN /By |97, (3.23)

ThlS has the interesting interpretation that Ky (E, , E, ) is the
ratio squared of the component of | ¥ (E, E,))to that of | v, )at
the “boundary” of the subspace U, . Result (3.22) can be
made more general due to relation (2.20). In fact,

T.(E,) T(E,)

K (E, E 324
v(Eg Ey) = I. Fm,,, (3.24)
is independent of any m,n<N — 1.
With the definition
w, = 1/Ky(E,, E,), (3.25)
we may write the relation (2.22) as
19,) = o, | ¥(E,)). (3.26)

In the Sec. ITID we will explain the sense in which {o, }
can be interpreted as the numerical weight associated with
the set of Harris energy eigenvalues (£, }.

C. The spectral function and reproducing property

As a prelude to proving the reproducing property of
Ky (E, E') we define the spectral function'® oy (E ) as a step
function which is constant except at E,, and whose jump at
E, is w,. More specifically,

o, for E>0,

0<Eq<E
on(E)=

— o, for E <0.

E<EKO
Hence,

onE) S, sE_E.) 3.27

= w — . .
aE 2k (327

We first prove two lemmas.

Lemma I: The sets {T,(E)}¥=/ and {T,(E)}¥ - are
mutually orthogonal in the sense that

f T,(E T, (E)oy(E) =5, (3.28)
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Proof:
J TAE T, (EMowE) = 3 0T, 1T, E,)
Writingw, as I, . I, . /T, (E,)T, »(E,), and noting the defin-

ition (3.3) of T, (E ) and the orthogonahty property (3.6), we
find that

_ N1
an(E)Tm(E)doN =S ToVg = 6o
g=0

Lemma 2:
JKN(E, E')doy(E')=1. (3.29)
Proof: This is a special case of the reproducing property
JKN(E, E'doy(E') = Niol w,Ky(E, E,).

=

Using the special case (3.9), we write
fKN(E, E'\doy(E')

Na! Ty_, (Eq)
= w, ———-J E)Ty(E
q;o g E—Eq N—I,N( JTN(E)
=1
The last equality is verified in Appendix A.

Now, we are ready to prove the reproducing property.

Lemma 3:

JKN(E’ E')f(E'Mdoy(E")=f(E) (3.30)
provided, for some {c,}Y -4, f(E)can be represented as

FIE)="S . T.(E) 331

Proof: It suffices to take f(E ) = T, (E) for some
m<N — 1. Then with the help of (3.19) we have

fKN(E, E'\T,,(E oy (E')

=S 0, KylE E, T, E,)
Nil{T”‘(E)J ET E\T (E
=2, E_E v, E)Tnl )} m(Eg)

Recalling the definition of g,  _ (E ) and the relation
(2.13a), we have

f Ky(E, E'VT,(E\day(E")

= —Gun (EWy_ WNETNE)=T,(E).

D. Numerical weights associated with the Harris
eigenvalues {£_}7 "]

When ¥ = 0, the resulting set {w 350, has already
been shown to be the numerical welghts ass001ated with free
Hamiltonian energy eigenvalues [ £}~ o. Furthermore,
the full Green’s operator

1Y) (X | J T E)D YIE)]|
+ dE 3.32
2% Th T Eoz 332
has the matrix elements

& mlz) = (d,8(2)]8,,)
<¢n |Xb>(Xb l¢m
Z

» —Z

glz) =

o[ 5B HEDQENE)

E—:z

where the sum is over bound states of the full Hamiltonian
(H°+ Py VP,
If n, m<N — 1, then

RS (4. |X£ Y Xy |6 )

—z
f dE ( )dE. (3.34)

For z complex and away from the real energy axis the
integral can be approximated by a quadrature. If the set
{E,: E, >0} is chosen as the set of abscissas, and {{2,} is
the associated set of numerical weights, then we may write

mll:q) Tm1£

de ey e =~y o ———* 2 : (3.35)

E,>0

On the other hand, from (2.23), (3.24}, and (3.25), we have

TABLE L. Numerical weights {&, | associated with the abscissas { E, } calculated analytically compared with the weights {2 , | as calculated by the Heller
derivative rule. Results are given for the s-wave Hamiltonian with potential ¥ = — 27|u> <ul, u(#) = e~ " /r, and Slater basis with N = 10 and a scale

parameter A = 3.2 is used.

q E, x, 02, @,

0 —0.113 49E + 01 —_ — —

1 0.387 04E — 01 — 0.941 30E + 00 0.117 44E + 00 0.115 59E + 00
2 0.161 94E + 00 —0.775 38E + 00 0.211 69E + 00 0.211 83E + 00
3 0.395 70E + 00 — 0.527 72E + 00 0.278 13E + 00 0.278 O9E + 00
4 0.800 84E + 00 — 0.23027E + 00 0311 22E+ OO 0.311 25E + 00
5 0.151 45E + 01 0.839 24F — 01 0.311 95E + 00 0.311 93E + 00
6 0.287 40E + 01 0.383 72E + 00 0.283 17E + 00 0.283 11E + 00
7 0.587 17E + 01 0.642 04E + 00 0.230 03E + 00 0.230 04E + 00
8 0.145 38E + 02 0.838 16E + 00 0.160 18E + 00 0.160 06E + 00
9 0.615 75E + 02 0.959 27E 4 00 0.814 83E — 01 0.813 27E — 01
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TABLE II. S-wave phase shift for scattering from the separable potential ¥ = — 27| > <u| with u(r) = e 7" /r. The inverse Fredholm technique is used
utilizing &, and £2, of Table I, respectively. The results are compared with the J-matrix phase shift in the same approximation, namely, Slater basis with

N = 10 and A = 3.2, and also with the exact result.

Phase shift Phase shift J-matrix Exact
k (a.u) using flq using &, phase shift phase shift

0.25 0.256 436E + 01 0.255 988E + 01 0.255 842E 4 01 0.255 838E + 01
0.50 0.203 266E + 01 0.203 534E 4 01 0.203 550E + 01 0.203 550E + 01
1.00 0.126 201E + 01 0.126 257E + 01 0.126 267E + 01 0.126 263E + 01
2.00 0.520 271E + 00 0.520 419E + 00 0.520 510E + 00 0.520 456E + 00
3.00 0.245 732E + 00 0.245 80SE + 00 0.245 852E + 00 0.245 815E + 00
4.00 0.130 409E + 00 0.130 410E + 00 0.130 446E + 00 0.130 415E + 00
5.00 0.758 118E — 01 0.758 446E — 01 0.758 594E — 01 0.758 S09E — 01
z. (2) z Toey Tz, + z Toe) T, where the last sum in (4.7) gives the quadrature approxima-
g m Z| = a)q _— a)q _— . . .

n o E,—z P E —:z tion in the integral of (4.4). We now use the quadrature

(3.36)

comparing this with (3.35), we conclude that the set {w,: E,
> 0} is the numerical weights associated with the set of ab-
scissas {E_: E, >0}.

IV. AN EXAMPLE USING THE INVERSE FREDHOLM
DETERMINANT

To test numerically the results of the previous section,
we utilize the L >-Fredholm technique.>* Unlike the usual
treatment which starts with the Fredholm determinant

z—H
Dz)= det(———), 4.1
() = det{ 75 (4.1)
we here start with the inverse Fredholm determinant
0
D'z = det(z il ) 4.2)
z—H
It is easy to show that, except for the introduction of the

bound states, the inverse determinant D ~!(z) has similar
properties to D (z) itself. In particular,

(i) D ~(E +ie) = |D ~\E)le * “E'=B(E) — irA (E),
(4.3)

o Dot E

(ii) D (z)—1+zz_Eb in)dE (4.4)

where the sum is over the bound states of H, and a, are the
residues of D ~'(z) at bound-state energies.

(i) The real and imaginary parts of D ~!(E + ie) are
related by the dispersion relation

BE)=1+ —+9’J ———dE'. (45
( Z E—E o E—E’ 143)
An approximate determinant D .}  (z) arising from
diagonahzatlon of both H° and H in the finite basis
{1.)}5 2o (resulting in the eigenvalues {E°}Y - and
{E, {5 ¢} will have the form

—1 z— EO
a TOX (Z) ( z ) 4‘6
pp ql;lo z — Eq ( )
. B L N
Eq<OZ—Eq Eq>oZ——Eq ’ )
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weights o, derived in Sec. III. Using the transformation

2
_E-i/8 (4.8)
E +1%8
and making the definition
~ dx
== 49
@ (dE)E—Eqwq’ 9
we then have
N-1(F __FEO approx
BE)=T] < q)+A (E )(dE /dx)
=0 \E—E, F(x)
y (@ TUF)dx 5(,F(xq)),
—1 E—E(x') Eq>OE~Eq
(4.10)
and 4 “PP"%(E ) is obtained by interpolating the values
{4 (E,): E, >0}, where
A NE V=b, /o, (4.11)
For convenience, we have taken'® F (x) to be (1 — x?)'/2 The

example we have chosen for the potential is the one-term
separable Yukawa potential

V= —2mu){u|, (4.12)
with

u(r) = (rlu) =e~"/r. (4.13)
We have used the Slater basis with A = 3.2 and N=10.In
Table I we give @, and compare it with the Heller deriva-

tive'' weights .() These are obtained by interpolating x,
(corresponding to E_>0)in g such that

[x(n)]n:q =Xg- (4.14)
Then

[ dx(z) (4.15)

We see that the agreement is excellent.

In Table II we calculate § (E ) for several values of the
energy using both & and {2, and compare them with the J-
matrix § (E ) of Eq. (2.12) and the exact result.'®

APPENDIX A

Since
Ty_1(E)= —8v_1n_(ENy_ NE)TyE) (A
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and

NS Th_AE)

& - 1nv-1lE)= z @

g=0 4 Eq—E ’

we can write

§N~1,N1(E)=TN—1(E)[ z

N—1 f;

SO E,—E]

To solve for f,, we cast (A3) in the form

=0 E,—E

and then take the limit E—E, to obtain

or

TNAI(Eq) =qu? -1(En)/fq

fo=0,Ty | (E,)
Inserting the result back into (A3), we have

and using (A1) again for T, _,(E), we finally get

322

N—1 TN~lEq
By E) =Ty _(E)S @, Ty lE)

& ' E,—E
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Ty ((E)=8y_1n_1lE) [ 2 “i‘—],

(A2)

(A3)

(A4)

(A35)

(A6)

L=dy (WEITWE) S 0, 2Pl

q
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Scattering by the Coulomb plus Graz separable potential is studied by employing a coordinate
space approach to the problem. Exact analytical expressions for on- and off-shell Jost functions
filk ) and £,(k,q) are constructed and certain useful checks are made with regard to their limiting

behavior and on-shell discontinuity.

PACS numbers: 03.65.Nk, 25.10. + s

. INTRODUCTION

In two recent papers'” (hereafter referred as papers I
and II) we developed a method to treat the problem in the
title, which does not make explicit use of the two-potential
theorem.” Concentrating on the s-wave problem we solved
the associated radial Schrédinger equation for some useful
Coulomb plus nucleon-nucleon interactions with regular
boundary condition* and constructed expressions for on-
and off-shell Jost functions*~’ by making use of certain inte-
gral representations for the latter.

In the present paper we extend the results of papers I
and II to higher partial waves by working with a form of the
Graz potential® in uncoupled partial waves as used by van
Haeringen and Kok.? In Sec. II we solve the Schrédinger
equation for the Coulomb plus Graz potential and use this
result in Sec. III to construct expressions for on- and off-
shell Jost functions. Finally, in Sec. IV we present some con-
cluding remarks.

1l. REGULAR SOLUTION FOR COULOMB PLUS GRAZ
POTENTIAL

In the representation space the rank-1 Graz separable
potential® is written as

Virr)= — A2 2N ) e =B+, (1)

The radial Schrédinger equation at a center of mass energy
E = k* for the Coulomb plus potential in (1) is

& = 2 gk~ aee )
with
dilk)= —/1,2‘2’(1!)_2J.ws’e‘BS¢,(k,s)ds, (3)

and 7 the well-known Sommerfeld parameter. To solve (2)
for the regular boundary condition we change the variable
by substituting

¢,(k,l') =r" le’krgl(k’r) ’
(4)
r= —z/2ik,
and get
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zdjz‘ QU2 g’” — 4+ 1+ gl
__ 4 (5)
2ik
with
= (B + ik)/2ik . (6)

Applying the Laplace transform method of paper 1 in (5) we
obtain the regular solution ¢,(k,r) in the form

d k)= r e P (I + 1 + in,2] + 2; — 2ikr)

. d{(k) rj+1e,-k, - p”_l 0
2ik N |
XU+ 1+4in,2l + 2; — 2ikr). (7)

The result for d,(k ) is determined'® by substituting (7) in (3),
and we have

27 MY IR+ 2) L,

d k =
= = ek ¢ @
with y = arctan &k /8. Here
Dyfk)=1—A,2" (Y HB? + k) (B —ik) ¥~
o gy 2 +nl(B+ik"
. 2ik
X2F1(1,l+ l+n+ipn+1; ﬁ—zk) 9)

is the Fredholm determinant associated with the regular so-
lution for the Coulomb plus Graz potential. Thus

$ilk,r) =P+ e% D (14 1 4 in,20 +2; — 2ike)

27214 2)
" 2kD, (k) B* + k!

2y, + Ieikr

0 n—

xzp

=1 (n—1)!

8,1 + 1+ in,2l + 2; — 2ikr) . (10)

The function 6, (a,c;2) has been defined in (20) of paper 1.
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lli. JOST FUNCTIONS

For the / th partial wave the on-shell Jost function is
obtained from the integral representation®®

k e—in'I/Z
k)= -
filk) (21 + 1)1

XJ; J; re' drdr' filk,)V,(r,r') X ¢, (k) , (11)

ilk)+

where

filk)=e™?L(1+ 1/ (1 41+ in) (12)
stands for the Coulomb Jost function. The Coulomb Jost
solution is given by*

frl:(k’r) — _ (2kr)’+ ll-em/zei1kr~ 17/2)

XY+ 1+ in2]l + 2; — 2ikr) (13)

with ¥ (a,c;2) an irregular confluent hypergeometric func-
tion. Substituting (1), (10), and (13) in (11) we get

. kl — il
filk)=fik) — R

XJ ’,21+le—(B7ik)r
0

X+ 1+ in,2l +2; — 2ikridr . (14)

The integral in (14) can be evaluated by using'’
r(l+s—d)(s)
T(l+b+s—d)

Xa~%LFbs;l +b+s—d;l—p/a),

Res>0,1+ Res>Red. (15)
Thus
Silk)

= filk) +

d,(k )2k )+ Vg™

f e ™ “x*~ ' (bdyux)dx =
0

Ali21+ lk 2!+ 1(21 + 1)!!6 - i1rle7m/28277y

L +2+ D,k )\ B—ik B>+ k!

x2F1(1+1+in,2l+2;l+2+in;g+’;). (16)
The potential in (1) goes over to the Yamaguchi potential for
! = 0. Thus for the s-wave (16) should yield our result in
paper I for the Coulomb plus Yamaguchi potential. We
show below this is indeed the case.

For the s-wave {16) reads

2ikAe™ (B — ik )" *?
T2+ imDyk)B*+k?)

xo (1422 + i BE2E). 17)
B—ik

The Fredholm determinant Dk ) coincides with that for the
Coulomb plus Yamaguchi case. While making a comparison
it should be noted that instead of the negative sign before A,
in (1) the conventional Yamaguchi potential is written with a
positive sign. We now transform the ,F, function occurring
in (17) by the three-term recursion relation'?

p(1 = xpFy(ap + Lbx) + {l@a—p)l —x) + (b — p — a)}
XoFy(apbx) +(p —b)Filap — Libx)=0.  (18)

Solk) =r5{k) +

324 J. Math. Phys., Vol. 25, No. 2, February 1984

The relation (18) generates the set of hypergeometric func-
tions which differ only in p-values with fixed values of g and
b. The parameters @ and b may be complex or real integers.
In our case both these are complex. In view of (18),

. . B+ik) (B — ik )1 + in)
F(1+z 22 i XY _ Ao+
G e Ly 2ik

ﬂ-i—zk)

— i F(1+1,12+1, 19

72 ] Tk (19)
Using (19) in (17) we get

Ao

ok)=rfolk)|1 —
Jolk) =1l )[ Dyk)(B*+ kB —ik)
{1_ 2k
(1 +in)(B — ik)

sz,(l +in 12 + in; gﬂi)” (20)

which agrees with our previous result. It is of interest to
remark that the result in paper I was obtained without the
use of integral (15). The simple technique described there
does not appear to work for higher partial waves. Thus, use
of the standard integral of Slater'' was unavoidable for the
present case.

In terms of the regular solution ¢,(k,r) the expression
for the off-shell Jost function is given by*’

+ qlefml J‘ww(1+
20+ 1) Jo

_/{ 2—21(1')—21 —Brf s’e

0

fitkig) = | 225 ik

“"¢,(k,s)ds]dr (21)

with w! *'( gr) the Riccati-Hankel function in the phase con-
vention of Messiah.'* Here g is an off-shell momentum. Us-
ing in (21) the expansion of w{* ' ¢r) given in paper II we get
/i (k,g) in the form

A2 g i e

kog) = folkog) —
i) = fitka) =
d 1)’(l+!) =iy
-Z'o J2ig [(ﬁ it -
- pn_l (l"j+n)!( 2k \" Gl

XX (n+21+1)\k+q) k+ao

F2(1,1+1+n+i77,l+1+n——j;

k2—|l—cq)] ’ 22

where ,F, is a special case of the generalized hypergeometric
function defined by

14+n2l4+2+n;

& (al)j"'(am )jzj
e Fu (X iseees@iBrseeiBui2) = _

(e ' 20 (BBl 7
In (22) f¢ (k,q) is the off-shell Coulomb Jost function for the
{ th partial wave,”

(23)
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in K\ < (l+j)!( 2% )'—M
kg =1+ ___..__<_) BURILICLAN Pk
Siteq) 2RI+ 1\ g ,;0 1 \k+gq
k
X2F1(1+ il —j+ 12042 ;2:;) 24

The hypergeometric functions which occur in (24) can be
generated by using the recurrence relation (18). In an earlier
publication van Haeringen'* performed some kind of re-
grouping of the ,F, functions in (24) to write a convenient
formula for f§{k.q).

For scattering on short-range potentials'

lim f)(k.q) = fi(k). (25)
g
The Coulomb analog'® of (25) is
lim ofilk,g) =/filk), k>0, (26)
q—b
where
— in /2
m:(q k) e . 27)
g+k/ I'(l1+in
Using the two-potential formalism in conjunction with the

integral representation of the off-shell Coulomb Jost func-
tion it has been found that'* the general relation

lim f;(k.q) =/(k), k>0 (28)

holds good for the Coulomb plus short-range potential. It is
not immediately clear if our results for f5(k,q) and f;{k,q)
satisfy the criteria in (26) and {28). Thus in Appendix A we
present a proof in respect of this.

IV. CONCLUDING REMARKS

Based on observations in two recent papers, we have
constructed exact analytical expressions for the on- and off-
shell Jost functions for scattering by the Coulomb plus Graz
potential which is believed to provide an accurate descrip-
tion of the proton-proton system by means of separable in-
teractions. We have made some useful checks on our expres-
sions for f;(k,q) with particular emphasis on their limiting
behavior and on-shell discontinuity.

APPENDIX A
From (24) and (27) we have
ine™?

1+ )220+ 1

<am(G0) QIR

sz,(1+ U+ ind+ 120+ 2 -kik—)

lim ofj(k.q) =
gk

+4q
! - I~
(e (2 Y
+ LR .
j; 7 k+gq
, , 2k
XF NI+ 1+igd—j+ 1,20 4+ 2, ——}|.
k+gq
(A1)

The hypergeometric function inside the summationin (A 1)is
finite as ¢—k. Thus
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_ i I N I—j+1
m(E) (025 )
—k\g+k/ \q/i=n ! \k+gq

><2F1(l+ 14+ inl—j+ 1,214+ 2 i) =0. (A2)
k+q

On the other hand, ,F, (I + 1 4 in,] + 1,21 + 2;2k /(k + q))
[ = ,F; (a.B;7;2)] exhibits a singularity in this limit since Re
(@ 4+ B — 7) = 0. We deal with this by using transformation
formula

FlaByz=(1—2" 5F\y —ay—Byz) (A3)
and the recursion relation'’

Ny — Bz — a)F\laB;v:z) — vy — a)hFila — 1.55y;2)

+aBz(l —2hFila+ 1,8+ Ly + 1,2) =0, (Ad)
and finally obtain
AY: I+1
it G
—k\g+k/ \qg/\k+q
2k
I+ 1+int 1;21+2;——)
><2F]< +1+mi+ ktq
_ ' +imr2l+?) (AS)

il (1 + 1 + in)

The criterion in (26) now follows from (A1), (A2), and (AS5).

While dealing with the Coulomb plus separable poten-
tial we specialize to the s-wave for simplicity of presentation.
The general /-wave case can be treated similarly. For the s-
wave (22) reads

Jolk.g) = f5(k.q)
_ A™™ (B + ig)
Dk B>+ kB* + 4°)

'loﬂezﬂy
Dy(k)B* + k )k + q)

0 n—1 n
<3 )
isi(n+ 1) \k+gq
. 2k
XF(1,1+n+l ;n+2;~—).
2 7 P

q

From (A6) and the s-wave form of (26} we can write

i‘i‘i ofolk.q) =S5(k)

(A6)

/1077e2’”’e’"”2

m q — k\7
Dok (B2 + kAT (1 + i) ok (q+k)

s pt! 2k \"
xtkra 5 £ ()

2k
XF(1,1+n+i;n+2;—). A7
20"y n k+q (A7)

Transforming the hypergeometric function in (A7) by
FilaByz)=(1—2°

XZFI( ﬂ,y - a;y;z/(z - 1)) 4 (AS)

we have
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— K\ o ool f 2k \n
i S £
im %) *+97 X i,

><2F,(1,1 fntipn+2 —31‘—)

k+gq
© n—1 2k n
=lim(g—k)'y £ — (—)
il 2\ =z
. 2k
X2F1(1+n+117;n+1;n+2;k— . {A9)
—q

The transformation in (A8) analytically continues ,F;

(1,1 + n + ig;n + 2;2k /(k + g)) beyond its circle of conver-
gence.'® Thus, evaluation of the limit in (A9) can be facilitat-
ed by the asymptotic behavior'®

F(;/)F(B—a) (_Z)fa

FilaByz)—

Y By —a)
I'in{a—B) (—2z)"# (A10)
')l (y - B)

of ,F| (a,B,7;z) for z— oo . Equations (17) and (A6}-{A10) can
now be combined to show that

lim wfo(k,q) = folk ) (A1)

The treatment given above explicitly demonstrates that the
criterion in (28) holds good both for Coulomb and Coulomb-
like potentials.™
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A fully crossing symmetric vertex function was calculated in an exactly soluble model. It has
branch points in the interaction strength whose positions are independent of the energy variables.
The irreducible vertex parts entering the Bethe—Salpeter equations are more involved than the

vertex function itseif.

PACS numbers: 03.80. + r, 11.10.8t, 11.50.Jg

The four-point vertex function I, as defined via the
four-point function %" by the equation'

¥ = GG + iGGI'GG, (1)

plays a central role in many-body theory. The two-particle
propagator KX (s), the particle-hole propagator F{¢}, and the
self-energy 3 (w) can all be calculated from the same vertex
function I, provided it satisfies crossing symmetry. At-
tempts to calculate an approximate I” have yielded a consis-
tent K but an approximate F,” or vice versa.®> Further ap-
proaches have been only partially successful.* Attempts to
construct a I" that satisfies all three Bethe—Salpeter equa-
tions, thus guaranteeing crossing symmetry, result even for a
simple model in an intractable power series.® To the best of
our knowledge, no fully crossing symmetric vertex function
has ever been given, and therefore knowledge about its struc-
ture is incomplete. In this paper we present novel features of
an exact (hence crossing symmetric) vertex function calcu-
lated in a soluble model.

The model consists of two twice-degenerate single-par-
ticle levels at energies € and §. The interaction has matrix
elements A between the unperturbed ground state and the
two-particle two-hole excited state as in the Lipkin model.®

J

The two-point function G can be calculated directly from the
spectral representation and the four-point function %" is cal-
culated from the definition

(P \zaaltss tos 13y 1) = {O| T [Cl(tl)cz(tz)cz(tat)d(ta)] 10). (2)

This enables us to calculate I by inverting the Fourier trans-
form of Eq. {1).

Each matrix entry of the vertex function I",,34(s, ¢, #)
thus calculated has a simple pole in each of the frequency
variables ©,, @,, 3, and w, which correspond to the matrix
labels (leg poles). The positions of those poles coincide with
the corresponding entries of the self-energy matrix 2 ;(w). A
further left- and right-hand pole occurs in the variable
§ = @, + w,, and corresponds to the 4 — 2 and 4 + 2 parti-
cle systems, respectively. The two excited states of the 4
particle system arise as left- and right-hand poles in the var-
iables f = w; — @, and ¥ = w; — w,. From this vertex func-
tion, both F (t) and X (s) as well as % (w,) are obtained by per-
forming the appropriate integrals. The exact form of the
vertex function is given elsewhere.’

Since the essential features of our findings are found in
the simpler structure of F (), we present only the matrix
F,, 5, (¢) where each pair of indices runs over the labels
pp, hh, ph, hp:

4 a2ﬁ2 3 a2B2 3 a2ﬂ2 N a2ﬁ2 0 0 W
t— 2w t+ 20 t—20 t+4+ 2w
B B> azﬂz a’B? B B> 0 0
t—20 t+20 t—- 2w t+ 20
Fys(t)= , 5 , (3)
0 0 a B af  af
t—o t+o t—o 4+
0 0 af  aP B &
L l—w tH+o t—o t+5J

D=(€—087+AY)" a*=(1-8Y=@+ (e — §)/2a.

It is obvious that unlike an RPA solution the pole positions
are real for any real interaction strength. Note that the RPA
sum rule no longer holds and that F has entries outside the
traditional RPA corner. While this was expected, there are
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features which appear to be new.

In contrast toa previous conjecture,’ I has singularities
in the interaction strength A which are independent of the
frequency variables s, ¢, and u. The eigenmode frequency @
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as a function of A has square root branch points at
A= 4+ i(e — &). These branch points appear in the vertex
function and carry over to F () [Eq. (3)] and X (s).

Branch-point singularities cannot emerge as a solution
of a linear integral equation of the Fredholm type, as these
solutions are meremorphic functions of the strength param-
eter. Consequently, they cannot arise from solutions of the
traditional approximations such as the RPA, the Galitskii
ladder, or more sophisticated but still linear approaches.*
While it is true that the RPA eigenmode frequency wgp A

= (€ —8)* — 1?)"/* has a branch point at A = + (¢ — §),
the singularities of Fp, , as a function of A, are all frequency
dependent and Fy;, is single valued.

The appearance of the branch points underlines the
nonlinear character of the equations for I" when starting
from the bare interaction.” When starting from the Bethe-
Salpeter equations it follows that such branch points must
appear in the respective inputs of these equations:

I'=9" +(¥GGr),
T'=% +(%GGr),, (4)
=% +(¥GGI),.

For the sake of completeness one may ask for the re-
spective inputs 7, %, or % in our model, as these are usual-
ly believed to be simpler than I itself and therefore used as a
starting point for realistic calculations. Knowing I" we invert
Egs. (4) to obtain the respective irreducible vertex parts. De-
spite the simpler form for I as described above, the irreduci-
ble vertex parts each have an infinite number of poles corre-
sponding to diagrams with an arbitrary number of
simultaneous particle-hole propagations. Such diagrams
clearly violate the Pauli principle, yet they must occur in 77,
%, or ". Only when the irreducible parts are combined to
form the full vertex function do the offensive terms cancel.

In Fig. 1 three sixth-order diagrams, relating to our
model, are drawn, each having a u#-pole, a pole in w5, and a
pole in @,. The first diagram is s-reducible, the second ¢-
reducible, and the third is irreducible with respect to all three
channels; they must be included in 7", %, or %~ wherever
appropriate. However, an expression of the above form does
not appear in the full vertex function, since the different
Feynman diagrams cancel when the subclasses are com-
bined to form I". This explains why 7, %, and %" are more
complicated than I, and indeed, in this simple model the
“smaller” set of all irreducible diagrams (denoted by y,) is
more complicated than I' itself. ,

A fully crossing symmetric vertex function can be con-
structed using ¥, as input.’ In particular, using the simplest
expression for ¥, i.e., the bare interaction, one obtains in
principle a I” which obeys all the conditions of crossing sym-
metry. However, this procedure violates the Pauli principle,
and an exact y, would contain, as part of the input, diagrams
to exactly cancel terms yet to be generated.

From the practical point of view this would scarcely be
possible. However, the unphysical poles thus generated are
expected to make an insignificant contribution as they occur
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FIG. 1. Three sixth-order diagrams contributing to I, Each diagram
has the same pole structure. (a) is s-reducible, (b) is ¢-reducible, and (c) is
irreducible.

at high energies and have a small residue.

Although our findings appear to cast doubt as to the
usefulness of the Bethe—Salpeter equations, we feel that the
physical concepts of highly collective states are valid, in par-
ticular when large particle numbers are considered. Guided
by these ideas one expects higher-order contributions to ¥, to
be unimportant and Egs. (4) to be relevant from a practical
viewpoint.

The branch point in the interaction strength is probably
of much greater physical relevance. We recall that the break-
down of the RPA is often associated with a phase transition.
This should clearly be revealed in an exactly soluble model,®
and could in fact be signaled by a branch point in the interac-
tion strength. As discussed above, we see the occurrence of
this particular singularity as a consequence of crossing sym-
metry. Whether connections to this effect can be established
is subject to further investigations.
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We comment on the possible application of the Hanbury Brown-Twiss method to the study of the
classical statistical properties of weak gravitational radiation from chaotic microscopic sources.

PACS numbers: 04.20. — q, 04.30. + x

It is well known that one of the most important predic-
tions of general relativity is the existence of gravitational
waves. Much experimental and theoretical work is being
done to detect and interpret this gravitational radiation.' In
this paper we comment on the possible application of the
Hanbury Brown-Twiss method? to the analysis of the classi-
cal statistical properties of the radiative part of the weak
gravitational field. This treatment is based on the polarized
classical degree of second-order coherence.’ For the gravita-
tional field at space-time points (1) and (2) in terms of obser-
vable quantities this is given by
(R %o (DR 2,00 (2)R 00 (2)R 00 (1))

= | (R Yoo DR ,00(2)) | ?

+ (| Reoxo{1)]*) (| Reoxo (2) | *) (1)
where ( ) denotes the ensemble average. R, is the radia-
tive part of the linearized Riemann curvature tensor* R,

= (k/2c})3y* withk = (167G /c*)!/%, G = Newtonian gra-
vitational constant, and ¢ is the + polarization state of
the positive frequency part of the analytic’ gravitational sig-
nal. The stochastic properties of the gravitational field are
described by a Fourier expansion of ¢ . The complex Four-
ier amplitudes are then regarded as random variables.

As an example, consider weak gravitational radiation
emitted by chaotic microscopic sources® in thermal motion.’
For sources in motion along the z-axis with a Maxwellian

velocity distribution, then from the statistical independence
of the amplitudes and the ergodic theorem® we obtain

T2
R* (1)R )y = —
( xoxo( ) xoxo( )> 2(277_)1 /20(:3

Xf @y, exp[ — (@x — wo) /2027 + iw,T]dw,,  (2)

wherer = ¢, — ¢, + (1/c){z, — 2,) and the product of Fourier
expansions has been replaced by an integration. .7 is the
time-averaged intensity and @, the rest-frame frequency of
the gravitational radiation. Performing the integration in
Eq. (2) we have

(R (DR, (2)
= (T2 [(PQ* — 027 — 0}) — i2yw,2?]
X exp[ir’02? + iwyr]. (3)

® Permanent address.
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Substituting Eq. (3) in (1) yields

(R Foro (DR %00 (2R o0 (2)R o5 (1))

72,4
'/ZC’; {[(702°* - 27— 0})* + 470} 02 "]

Xexp(— 7027 + (27 + w})’}. (4)
From Eq. (4) it is clear that for 72 < «,

(R %0 (1R %05 (2)R o, (2IR (1))

X0x0

> ( |Rxoxo(1) | 2) < ‘Rxoxo(2) I 2>

= (K I /422 + i) (5)
Consequently, gravitational radiation from sources in ther-
mal motion show a positive HBT correlation. Hence, two
detectors at two different space-time points with a response
time less than the coherence time 7, = 1/£2 of the radiation
would exhibit a correlation in gravitational field fluctuations
of the form in Eq. (4).

A Gaussian spectral distribution due to the Doppler
broadening of electromagnetic radiation due to sources in
thermal motion leads to the result?

(EX1)E *2)E,(2)E (1))
= (412 /€2 c*)[exp( — 8°7%) + 1], (6)

where ¢, is the permittivity, I is the time average light inten-
sity, and the coherence time is 7, = 1/6. Comparing Egs. (4)
and (6) shows that, unlike the electric field, the overall Gaus-
sian profile of the gravitational HBT correlation function is
modulated by a time-dependent factor. It is important to
note the origin of the difference between Egs. (4) and (6).
Basically, the electromagnetic coherence function, as mea-
sured by the ensemble average of the electric field strength
E, is proportional to terms involving the first time deriva-
tives of the vector potential 4. On the other hand, the gravi-
tational coherence function, as measured by the ensemble
average of the tidal field strength R, is proportional to
terms involving the second time derivatives of the gravita-
tional potential y,,. The importance of the tidal force field
R, as the observable quantity associated with the gravita-
tional field can be traced directly back to the principle of
equivalence and the meaning of the gravitational field as
measured from a free-falling frame of reference. The compo-
nents R, of the Riemann curvature tensor provide a real
measure of the presence of a gravitational field through the
mechanism of geodesic deviation® when the velocity of the
detector is negligible compared to the speed of light.
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A further example of gravitational radiation comes
from consideration of collisions. If a microscopic source of
gravitational radiation is considered to be emitting radiation
continuously before and after a collision with the same fre-
quency, then the net result of the collision is an abrupt and
random change of phase.’ The net result of multiple succes-
sive collisions is a Lorentz spectral distribution which leads
to the result, after a contour integration,

| (R :oxo(l)Rxoxo(2)> l

- « 2 T
_ ST J_ __f"_ke_z____zdwk
27’ cwlwg— o+ T
B K;c{ (@i — I? + 403 0%] e~ 117, (7)

where 7 =t, — t, + (1/¢c)(z, — z,). Hence, substituting Eq.
{7) in Eq. (1) we have
(R 20 (DR 2,0 (2)R 1000 (2)R c0x (1))

= (I /4 [(@03 — TV + 4} T (e 211 4+ 1).(8)
From Eq. (8), for I" | 7| < « we have
(R A (DR %0 (2R oo (2R oo (1))

> (RO Y (| R % | )

K72

T T4 [(@§ — 17 + 4o l?]. 9)
Hence, gravitational sources in collision exhibit a positive
HBT correlation of the form given by Eq. (8). For electro-
magnetic sources with a Lorentz spectral distribution the
electric field correlation function has the form?

417

(EXHDEXQE,E (1)) = Py e 4+1).  (10)

ol

Hence, unlike the electromagnetic field, the overall gravita-
tional Lorentz correlation profile is modified by the collision
frequency.

Comparing Eqgs. (4) and (8) we see that Eq. (1) can serve
to distinguish the coherence characteristics of the gravita-
tional radiation associated with different spectral distribu-
tions. The application of Eq. (1) is, however, by no means
limited to these cases. In principle, this analysis can be ap-
plied to the arbitrary gravitational spectral distribution asso-
ciated with any collection of sources.
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It should be mentioned that in the quantum-mechani-
cal interpretation of the degree of second-order coherence
for the electromagnetic field a positive Hanbury Brown—
Twiss correlation manifests itself as a tendency for photons
to arrive in pairs. This phenomenon is called photon bunch-
ing.? The quantum-mechanical interpretation of a positive
gravitational HBT correlation should, by analogy, indicate
the existence of graviton bunching. This bunching is, how-
ever, a characteristic of the chaotic nature of the sources. A
coherent source would result in a zero HBT correlation or
random graviton arrivals.
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It has been conjectured that shear-free perfect fluids in general relativity, with an equation of state
p = plu) and satisfying 4 + p=0, necessarily have either zero expansion or zero vorticity. We
prove that this result holds in the restricted case when the fluid’s vorticity and acceleration are
parallel. Specifically, we prove that if the vorticity is nonzero, the fluid’s volume expansion must

vanish.

PACS numbers: 04.20.Cv, 02.40. + m

1. INTRODUCTION

We shall assume in the following a familiarity with the
kinematic quantities of a fluid, as given by Ellis':

Uy =0y +416h; +ow,; —au;,

where u' is the future-pointing (timelike) unit tangent vector
to the flow, &' is the acceleration, and 0, @;, and 8 are
respectively the {rate of) shear tensor, the (rate of) vorticity
tensor, and the (rate of) volume expansion scalar. Shear-free
fluids are characterized by the vanishing of o;. The tensor 4,
is the projection tensor, 4, = g; + u;u;, into the rest space of
an observer whose 4-velocity is #'. As usual, indices are
raised and lowered with the metric tensor g;; our signature,
units and conventions for the Riemann and Ricci tensors
coincide with those of Ellis."

We shall suppose that the matter content of the space-
time is a shear-free perfect fluid obeying Einstein’s equations

R; —\Rg; + Ag; = pu,u; + phy,
where p is the energy density and p is the pressure of the
fluid. We shall further suppose that ¢ and p are related by a
barotropic equation of state p = p(u), and that i and p satisfy
the physically reasonable requirement u + p=£0. In fact, we
could well impose the more stringent requirement iz + p > 0,
but for mathematical completeness we shall adopt the less
restrictive condition u + p=£0.

It is important to note that, strictly speaking, the fluid is
merely assumed to have vanishing shear in some open subset
of the space-time manifold, and that, as such, our results will
be local and not global.

A number of existing results show that a shear-free per-
fect fluid, with equation of state p = p{u) such that u + ps£0,
will have either vanishing vorticity or vanishing expansion,
provided various additional assumptions are satisfied. The
first result of this nature of which we are aware is due to
Godel,? who proved its validity for dust { p==0) space-times
that are spatially homogeneous of Bianchi type IX. This re-
sult was generalized to all dust space-times (irrespective of
additional symmetries) by Ellis.” It has also been generalized
by various authors in another direction, viz., to all spatially
homogeneous space-times. This was done first for specific

*) Present address: Materials and Mechanics Branch, Atomic Energy of
Canada Limited, Whiteshell Nuclear Research Establishment, Pinawa,
Manitoba, ROE 1LQ, Canada.
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equations of state [Schiicking® considered dust models and
Banerji® discussed the equations of state of the form

P =y — lju, where y is a constant satisfying 1 < y#¥],and
culminated in the result of King and Ellis,®* who showed that
the result was valid even when the only restriction on the
quantities 2 and p is z 4+ p > 0. We have since shown’ that
the result is valid for spatially homogeneous space-times un-
der the more general condition u + p=£0. Finally, Treciokas
and Ellis® proved that for shear-free radiation (in which the
equation of state is p = lu) either the vorticity or the expan-
sion must vanish. This compendium of results leads one to
suspect that the following conjecture holds:

Conjecture: Any shear-free perfect fluid in general rela-
tivity with an equation of state p = p(u), such that u + p==0,
has either vanishing vorticity or vanishing expansion, i.e.,
o=0=wb =0.

Here @ and o are the vorticity and shear scalars, respective-
ly, defined by o: = (Jw’w;)'/? and o: = ({o70;)'>. We know
of exact solutions which satisfy the conditions of this conjec-
ture (but we know of none which indicates that the conjec-
ture is false). Among such solutions are the Friedmann-
Robertson-Walker (FRW) models, and the solutions due to
Wyman,® Godel,'® Krasinski,'' and Collins and Wainw-
right.'> We show in the present article that the above conjec-
ture is true in yet another special case, viz., when the fluid’s
vorticity and acceleration are parallel. More precisely, we
shall describe the dynamics using an orthonormal tetrad in
which the timelike axis is aligned along the fluid flow, and
with respect to which the {spatial) components of the vorti-
city and acceleration may be written as

(@, 0,0) and (i, 0, 0). We shall prove the result by first assum-
ing that @640, and then deriving a contradiction. A famil-
iarity with the orthonormal tetrad technique (see, e.g., Refs.
3 and 13) will be assumed.

The plan of this article is as follows. In Sec. 2, we de-
scribe the orthonormal tetrad specialization, and introduce a
notation which makes transparent the role of the commuta-
tion functions. In Sec. 3, we prove our result. The special
case in which the flow is geodesic {z = 0} was effectively
treated by Ellis® and requires a separate proof. We provide a
proof which follows closely that of Ellis,® but which is in our
notation, thus providing a clearer understanding of the role
of the intrinsic geometrical quantities, and allowing direct
comparison with the proofin the case #5£0. Since we plan to
investigate various features of the class of solutions presently
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being considered, a treatment of the special case # = Ois also
desirable. A discussion of the features which we intend to
investigate is provided in Sec. 4.

2. TETRAD SPECIALIZATION

We adhere closely to the notations and conventions of
MacCallum,!? but we shall find it convenient to transcribe
the commutation functions ¥, (@, 58, 8 = 1, 2, 3) as follows:

Vigs = €45 N + 6 %55 — 8%as, n*=n'"),

where
n %(Ada + {3) %(dz + Az)
Mg = | 1d, + 43) R )
—id,+4;,) —40n—0i) (‘923 - ﬂ)

anda, = [ — Y6y, + 033), Ud, — 4,), Yds — 4,)]. If the time-
like vector e, of the tetrad is aligned along the fluid flow u,
then the commutation functions 3%y, %4, and ¥° 4 (@,
B =1, 2, 3)are directly related to the kinematic quantities of
the fluid, and to the angular velocity £2 * of the triad {e, }
with respect to a set of Fermi-propagated axes: $°,, = #,,,
Vous = — 26, 4550° and ¥%5 = — 0”5 — 165

— €%, (0" + 27), where i, @,,, 0, 5, and G are the compo-
nents of the fluid’s acceleration vector, vorticity vector,
shear tensor, and expansion scalar, respectively. Moreover,
with the above transcription on ¥4, the quantities d,, 1,
and 6 2 (A, B =2, 3) may be regarded as the spatial compo-
nents of the acceleration, vorticity, and expansion tensor of
the e, lines, while 2 measures the spatial component of the
angular velocity of the dyad {e,, e,} along the e, lines [rela-
tive to the “nonrotating” frame, in which De,e; =0
(<>Deye;, = 0), where D denotes directional differentiation
along e,]. We can further decompose 8 ,, into its spatial
trace and trace-free parts. This gives rise to an “expansion”
scalar 6 = 022 + 633 and to a “shear” tensor, whose spatial

components 0, are given by §,, = 1 Y6, — Oy5) = — ~ 033
and &23 = 023; then n22 = &23 + -QA n33 = — (0’23 — .0)
M3 = — 0y = 033, anda, = — 16. Note that this decompo-

sition into *‘kinematic” quantities associated with the e,-
congruence is similar to, but not identical with, that of pre-
vious authors.>!14-1%

Since we shall be choosing both e, and e, in a geometri-
cally invariantly defined manner, the mathematical expres-
sions that we shall encounter will consist aimost entirely of
“kinematic” quantities associated with the e, and e, direc-
tions, whose role will thereby be accentuated. The quantities
A, and 4, have not yet been interpreted; they can be charac-
terized in terms of components of the acceleration and ex-
pansion of the e, lines.

We now proceed to specify an orthonormal tetrad to be
used in obtaining the results of Sec. 3. This tetrad is for a
shear-free perfect fluid with an equation of state p = p(u),
such that ¢ + p=£0, and with the timelike axis (e,) aligned
along the fluid flow u. For this development, the following
proposition is required:

Proposition 2. 1: For any shear -free perfect fluid with an
equation of state p = p(iz), such that u + p=£0, the vorticity
vector o satisfies the propagation equation
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p'9,0 — g,

™ = (p’ — P + €*Prwpl2,, (2.1)
where e, defines the direction of the fluid flow and p’
:=dp/du.

Proof: By the contracted Bianchi identities,

TV, =00+ +p)f=0 and d,p+ (1 + pli, Zg)

We define a function F by
Flu)y= — f £ du, wherep' = 4 (2.3)
p+p du

{apart from a multiplicative constant, ¢’ is then the thermo-
dynamic “enthalpy” of the fluid; the quantity — Fcoincides
with the “index function” of Ref. 14). We observe that, by
(2.2),

OF=p0 and d,F=1, (2.4)

and that Fis uniquely defined, up to an additive constant.
Applying the [e,, e; ] commutator to F, we obtain

€89 1y = — 20"p'0 + n"u, + €°Pa g, (2-5)

and hence by the Jacobi identities [Eq. (79) of Ref. 13}, Eq.
(2.1) results. a

Remarks: Note that the proof of Proposition 2.1 holds

even in the case when p is identically constant [and then &,
= 0 by (2.2)] and in particular in the case of dust { p=0).
Note also that Eq. (2.1) is simply the tetrad form of the usual
vorticity conservation equation for a perfect fluid with an
equation of state, restricted to the shear-free case (see Ref. 1
and references cited therein).

Since we shall be considering models in which the vorti-
city and acceleration are parallel, we choose e, to be aligned
along their common direction. Thus @ = (w, 0, 0} and
a = (&, 0, 0). For our present purposes, we shall assume
@=%£0, but for later investigations we shall also wish to con-
sider the cases =0, #=£0 and =0, #=0. The latter case is
exceptional, since the conditions o =0, =0, #=0 char-
acterize the spatially homogeneous and isotropic FRW
models’, and we shall exclude this from our discussion. Thus
we shall in any event be considering solutions in which
#? + »?s£0. The tetrad is then fixed to within a reflection
e,— =+ e, and an arbitrary position-dependent rotation, pos-
sibly combined with a reflection:

e,—€, cos O + e, sin G,

e, —>0(—e,sin@ +ecos0), 6= + 1.

We now show that we may choose a tetrad in which
o + { = 0. By applying the [e,, e, ] commutator to ¥ and
using (2.3) and (2.4), we obtain

(2.6)

Ogitg =p' 0,60 + 03, p' +(p' — )i, 0
+ €up i (07 + 27). 2.7)

We first show that 2, = £2; = 0. If ©5£0, preservation of the
conditions @, = @, = 0 along the ¢, lines implies {2, = 2,
=0, by (2.1). If ®==0 and uz£0, then preservation of the
conditions %, = %, = 0 along the e, lines implies

=p’' 3,0 + u2, =0, by (2.7), where use is
made of (2.2) and of the fact that p'%0, to deduce that
d,p' = d; p’ = 0. Now the (0 a) field equations, with
oc=w=20,imply ,0 = 0; hence 2, = £2, = 0. Under a
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transformation (2.6), with § = 1, ¥, = 0, + 2,—w,

+ 12, + 3,6, so by applying a transformation in which & is
propagated according to the requirement
900 = — (», + £2,) we may arrange for w, + £2, = 0. The
subsequent freedom of the tetrad is then e,— + e, and (2.6
with 4,6 = 0.

It is possible to specialize the tetrad even further. We
could, for example, arrange for 7, = 1, = — (6,5, — 2 )to
vanish everywhere. Under a transformation (2.6) with8 = 1,
¥’ 12 = N33—N35 08’0 + n,, sin’O — 2n,, sin Ocos O
+ 3,6, which can be made to vanish on a hypersurface
transverse to the fluid flow, by appropriate propagation of 8.
Subsequent application of the Jacobi identities [Eq. (81) of
Ref. 13, which requires that dyn;; + in3;6 = 0] shows that
n33=0. This tetrad choice corresponds to that of Ellis.> We
prefer to make the choice 325, — 1%, = ny, — 133
= 20,5 = O instead. Under a transformation (2.6) with
8 =175 = 71y = Ny — nyz—{ny; — n33) cos 26
+ 21,4 sin 26, and so we can arrange for n,, — n,5 to vanish
on a hypersurface transverse to the fluid flow, and then apply
the Jacobi identities [Eq. (81) of Ref. 13, which requires that
dpln,, — n33) + Ynsy — 1330 = 0] to deduce that
Ny, — N33 = 28,3=0. Our preference for this tetrad is predi-
cated on a choice which favors neither e, nor e, over the
other, and diagonalizing the matrix &, provides a simple
way of doing this. With this more convenient tetrad choice,
the remaining freedom is then ¢,— + e, and (2.6) with
O = kwr/2, where k =0, 1, 2, or 3 in the general case where
0,5 5=0, whereas if &,,=0 (so that n,, — n,; = O in all al-
lowed tetrads) the freedom is unchanged, i.e., it is still
e,— + e, and (2.6) with 3,0 = 0. Since the basis vectors e,
and e, are treated on an equal footing, our choice of tetrad
allows the various components of the Jacobi identities and
field equations to be checked against each other, by means of
the allowed transformations (e.g., under the rotation e,—e,,
e,—€,, and e;— — €,, the quantities «, 8, £2, 0, w, and n are
invariant, whereas d,—d,, dy;— — d,, A,—A,, As— — A,
and &,,— — 0,,). Indeed, use of this technique in Sec. 3 al-
lows us to avoid some tedious calculations.

The Jacobi identities, Einstein field equations, Bianchi
identities, and commutation relations in our tetrad and pres-
sent notation are written out in the Appendix.

3. THE MAIN RESULT

In this section, we prove the main theorem, viz., that a
shear-free perfect fluid with equation of state p = p{u) (and
with u + p=£0), in which the vorticity (») and acceleration
(t1) are parallel, has either zero vorticity or zero expansion
(8). The proof of this result is obtained by assuming that
@0=£0, and then deriving a contradiction. The proof of the
theorem divides naturally into two cases, according as u#5£0
or 2=0. The latter alternative is equivalent to p being identi-
cally constant. For the Bianchi identities (2.2) imply that
tt = 0<d, p = 0. Hence if p is identically constant, clearly
=0, whereas if =0, the [e,, g ] commutator acting onp
implies that @d, p=0, and so (assuming w=40) p is identical-
ly constant. This case is therefore equivalent to the situation
treated by Ellis’, who investigated shear-free dust { p=0),
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since any nonzero constant pressure component can be ab-
sorbed into the cosmological term (with a corresponding ad-
justment of the energy density). For reasons explained in the
introduction, we shall provide a proof of the result both
when #=£0 and when #=0.

Theorem 3.1: Consider a shear-free perfect fluid in gen-
eral relativity, with an equation of state p = p(u) satisfying
# + p=£0. Suppose that the vorticity and acceleration are
nonzero and parallel. Then the fluid’s volume expansion sca-
lar is zero.

Proof: We shall suppose that, under the conditions of
the theorem, the expansion scalar @ is nonzero, and derive a
contradiction. By applying the commutation relations to the
function F, we obtain propagation equations for , viz., (2.5)
and (2.7). It follows from (2.7) that since i,=i,==0,

0,60 = 3,6 =0, (3.1)

where use is made of the Bianchi identities (A26) and (A27)
and of the fact that p is not identically constant to deduce
that 4, p' = 8, p’ = 0. Hence from the field equations (A16)
and (A17),

dw=dw and Jw=dw. {3.2)
Applying the [e,, e,] commutator {A32) to 8, and using (3.1)
and (A 15), we obtain

3,0 = %, (3.3)
since w=£0. Similarly, the [e,, e,] and [e;, e,] commutators

(A31)and (A33) applied to 6 require, using (3.1), (3.2), (A 15),
and the fact that w=£0,

dn =0.n=0. {3.4)

Using the [e,, e;] commutator (A32) on F, we obtain from
(2.5) that

20 p'0 = ni, (3.5)

from which n3£0, by our assumptions that w60 and 20.
Now applying the [e,, e;] commutator (A 32) to @ and simpli-
fying with the aid of (3.2), (3.5), (A1), (A2}, and (A5}, we
obtain

an= —3wl. (3.6)

The next step is to obtain a purely algebraic relation
from the (00) field equation (A 14), by substituting for 4,0
from {3.3) and by obtaining an equation for d,# from differ-
entiation of Eq. (3.5). This differentiation yields

8y = 3p'w? — ub — (1/p")[(p" /) +p) — P’ — 114,
(3.7)

where use is made of (3.5), (3.6), (A1), (A15), and (A25). The
(00) field equation (A 14) becomes

in* +16° — 2071 +3p)
+ (/P [(p"/P e + p) — 20" — ]

i+ 3p—24)=0. (3.8)
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We next show that the requirement that (3.8) be propagated
along the e, and e, directions implies that d, = d; = 0. For
this purpose, we shall need the equations

O,u=di and du=du, (3.9)
obtained by applying the [e,, e,] and [es, e,] commutators to
the function F [cf. (2.5)].

Differentiating (3.8) along e, and using (3.1), (3.2), (3.4),
(3.9), (A26), and (A27), we have

d{2°(1 +3p)

— (/P [(p"/P )l +p) — 2p' — ]} =0,  (3.10a)
and similarly
d{2%(1 +1p')

—(/P)[(p"/P' e +p) — 20" —4]4*} =0.  (3.10b)

Note that we may regard (3.10b) as being derived by differen-
tiation of (3.8) along the e, direction, but that it can also be
readily obtained from (3.10a) using the symmetry of the tet-
rad, and a rotation e,—e,, e,—>€;, &;— — e,. If in (3.10)
20°(1 +3p) ~ (1/P)[(p"/Pe +p) — 2p" — }]* = O,
(3.11)
then the propagation of (3.8) along e, implies, using (3.3) and
(A11), that (1 + 3p'){e + p}d = 0. Thus p’ = — |, since
{u + p)0=£0 by assumption. But then Eq. (3.11) requires
®” + #* = 0, which is a contradiction. Hence Eq. (3.11) is
false, and so Egs. (3.10) imply that

dy=dy=0. (3.12)

In view of (3.12), the [e,, e;] commutator (A32) applied
to @ yields, on using {3.2), (3.5}, (A1), and (AS5),

nb = 4wb, (3.13)
and, hence, by (3.5) and the fact that n£0,
u=3p0. (3.14)

Now recalling (3.1), (3.2), (3.4), and (3.12), we see that propa-
gation of Eq. (3.13) along e, and e, implies that

3,0=3,6=0 (3.15)
(where again we make use of the fact that n5£0). If we apply
the [e,, e;] commutator (A32) to 8 and use (3.13), (3.14),
(3.15), (A6), (A15), and the fact that n5£0, we obtain

3,0 =20 +13p' — 162 (3.16)
However, if we eliminate d,# from the field equations (A 14)
and {A18), and use Eqs. (3.3), (3.14), and {3.16), we find that

U +p+26,,°=0. (3.17)
Since Eq. (3.17) requires g + p<O0, it could be regarded as a
contradiction. However, the conditions of the theorem in-
volve the simpler assumption that u + p=£0, and, as such,
(3.17) is potentially valid. If {3.17) is to hold, then differenti-
ating in the e, direction givesusp’ = — 4, using (3.17), (A13),
(A24}, and the assumption that (¢ + p)@s£0. In this case, Eq.
(3.8) implies

I +167— o —i? + i +3p—24)=0,
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whose propagation along e, implies [using {2.7), (3.3), (3.5),
(A5), (A11), and (A24)] that w* + &* = 0, a contradiction.
Hence, under the conditions of the theorem, our assumption
that 8540 is shown to be false. a

Remark: An alternative proof of this theorem involves
using (3.5) as a starting point and investigating its propaga-
tion along the e, direction.”

The special case in which #=0 is considered in the next
theorem.

Theorem 3.2 (Ellis®): Consider a shear-free perfect fluid
in general relativity, in which the fluid flow is geodesic and in
which u + ps£0. Suppose that the vorticity is nonzero. Then
the fluid’s volume expansion scalar vanishes.

Proof: As previously observed, under the conditions of
the theorem, the pressure p is identically constant. Since the
acceleration must vanish, the field equations (A 14)and (A 15)
provide equations for propagating ¢ along e, and e, and for
compatibility it follows that

Ip= —8a6, (3.18)
by virtue of the commutator (A28) and Egs. (A1), (AS5),
(A11), and (A15). Similarly, the Bianchi identity (A24) and
Eq. (3.18) provide equations for propagating i along e, and
e,, and the commutator (A28) applied tou yields the algebra-
ic relation

80(1060 — nw) + Y + pn =0, (3.19)
where use is made of (3.18), (A5), {A6), (A15), and the as-
sumption that @=s=0. We now differentiate Eq. (3.19) along
e,, and use (A5), (A6),(A11),(A14),(A15), and (A24), togeth-
er with Eq. (3.19) and the assumption that ws£0. We obtain

2n080 + 6[20° — Yu +3p —24)] =0. (3.20)
Differentiation of this along e, yields, in a similar manner,
00 [10*+p—A ] =3nw[20® —ju+3p—24)1. 321)

We shall now assume that =40, and arrive at a contra-
diction. We first show that Eqgs. (3.19)—(3.21) imply that

n=0=0. (3.22)
Multiply (3.21) by @ and substitute (3.19) to obtain

n[40* — 30’(3u + 19 — 164 ) + &u + pl p — A)] =0.
(3.23)

If n=£0, then (3.20) shows that #=£0, since otherwise w8 =0.
Moreover, Eq. (3.23) shows that @ and u are functionally
dependent, and hence, using (3.18), (A1), (AS), and (A24), we
obtain @” = & (u + p), whose propagation along e, requires
that @0 =0, a contradiction. Thus n==0, and so, by (3.19),
6 =0, and Eq. (3.22) results.

Next, we apply the [e,, e,] commutator to o, to yield

olhw) = — 0 0,0 + w Iy — dy?, (3.24a)
where use is made of Eq. (A 16). Similarly, invoking a rota-
tion e,—e€,, e,—>€;, €;— — €,, we have

0p(030) = — 0 03w — G + d0°. {3.24b)

We now apply the [e,, e,] commutator to  and use Egs.
{3.24b), (A5), (A8), (A14), and (A16), thereby obtaining
Oopt = B w 3,0 + 3 dyo?, (3.25a)
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and similarly

o =Y wdw+ 3 dy0”. (3.25b)
The [e,, e,] commutator applied to u yields
3(0;0 — dsw)[290° — 6(u + p)]
— w0 (268,00 + 6d,w) =0, (3.26a)

where we have used Egs. (3.24a), (A5), (A7), (A16), and
{A24). Similarly,

3(3p0 — dyo)[290% — 6(u + p)]
+ w6 (26,0 + 6d30) = 0. (3.26b)

If we regard Egs. (3.26) as linear algebraic equations for the
unknowns 29«” — 6(u + p) and w6, we see that, since
w8%0, the determinant of the coefficients must vanish, i.e.,

26[(‘32‘0)2 + (‘93(0)2] — 200[d,0,0 + dy0;0]

— 6(d,* + d;)w* =0. (3.27)
Differentiation of (3.27) along e, now requires
d,0;0 — dyd,0 =0, (3.28)

where we have used Egs. (3.24), (AS5), (A7), (A8), (A16), and
(A17).

Finally, we apply the [e,, e,] commutator to u, using
(3.25), (3.28), (A2), (A5), and (A24), to deduce that

2907 = 6{u + p), (3.29)

whose propagation along e, requires, using (AS) and (A24),
that w@ =0, a contradiction.

It therefore follows that under the conditions of the
theorem, the expansion scalar § must be zero.

Theorems 3.1 and 3.2 show that under certain circum-
stances, the condition o =0 implies w8 =0. This result is
trivially true in the case when ©=0, so we can amalgamate
the results of Theorems 3.1 and 3.2 to deduce the following:

Theorem 3.3: Any shear-free perfect fluid in general
relativity with an equation of state p = p(u), such that
1 + p=£0, has either vanishing vorticity or vanishing expan-
sion (i.e., 0 =0=w# =0), provided that the vorticity and ac-
celeration are parallel (and possibly zero).

4. DISCUSSION

If the conjecture of Sec. 1 were true, it would be natural
to investigate the space-times arising in the three cases

(i} o=w0=0, 6=£0,
(ii) o =0w=0=0,
(iii) 0 =0 =0, w=~0,

where the matter content is a perfect fluid with an equation
of state p = p(u) satisfying p + p5£0. Case (i) is that consid-
ered recently by Collins and Wainwright,'? in which all re-
sulting space-times were obtained. The procedure used was
to specialize the results of Barnes'’ on shear-free normal
flows of a perfect fluid to the situation when there is an equa-
tion of state p = p(u), with g + p=£0. The resulting space-
times were first shown to be necessarily “locally rationally
symmetric,”>'® and it was then deduced that either they
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were FRW models (in the case #=0), or that they were
spherically symmetric or plane symmetric (and hypersur-
face-homogeneous). We have found a somewhat more satis-
factory derivation of this result which uses the orthonormal
tetrad formalism and a more fundamental starting point
(rather than assuming the specific coordinate system and the
results derived by Barnes'”).

The space-times resulting in cases (ii) and (iii) are less
clearly understood. In case (ii), the space-times are static,
and the flow is irrotational. In the case when u==0, the solu-
tions are FRW and hence are Einstein static models, general-
ized to include a pressure term. In the case when #5£0, and
the solutions are algebraically degenerate, the space-times
appear in the set of exact solutions given by Barnes.'”!® The
existence and nature of algebraically general solutions in
case (ii) does not appear to have been investigated yet. We
have considered this question, together with the question of
the isometry group, in both the most general case and in
various special cases. We have also made some progress to-
ward understanding the nature of the solutions in case (iii)
when o and 0 are parallel, and specifically with regard to
allowed Petrov types and isometry groups (cf. the results of
Ellis* in the case of dust). It is our intention to present these
results in a future article, using a procedure which allows
simultaneous discussion of cases (i), (i1), and (iii) in a uniform
manner.

It is interesting to note that the conjecture of Sec. 1 is
entirely general relativistic in nature, for, as noted by Eliis,'
there are many corresponding Newtonian solutions, even
when the acceleration is zero, in which o =0 yet @6=£0. It is
also of interest to note that the conclusion of the conjecture,
viz., that w8 =0, requires that either the fluid-flow vector or
the vorticity vector be hypersurface-orthogonal, since if
@=£0 then € =0, and so by choosing a tetrad in which
o = (v,0,0)and © + € = 0 as in Sec. 2, the (01) field equa-
tion [Eq. (83) of Ref. 13} implies that » = 0 and hence the
hypersurface orthogonality of .

Ellis* has discussed the physics of shear-free dust, and
similar remarks apply for shear-free perfect fluids. For a nul/
congruence, the propagation equations for the expansion
and vorticity contain terms involving the expansion, the
shear, the vorticity, and the Ricci tensor (but no Weyl tensor
terms); on the other hand, the propagation equations for the
shear contain not only terms involving the expansion, shear,
vorticity, and the Ricci tensor, but a/so the Weyl tensor.
Thus the free gravitational field (or the “news”) enters the
evolution of the congruence by way of the shear, which then
plays a role in driving the other “‘kinematic” quantities. We
can say exactly the same for a timelike congruence associat-
ed with a perfect fluid. Thus, in either case, for a shear-free
congruence, the free gravitational field is prevented from
exerting an influence on the evolution of the congruence.
Furthermore, by the well-known theorem of Goldberg and
Sachs,?’ any vacuum space-time containing a shear-free null
geodesic congruence is restricted, since it must be algebrai-
cally degenerate. The theorem of Ellis® (cf. our Theorem 3.2)
provides an analogous result: any geodesic shear-free perfect
fluid space-time is restricted, since the flow must have
w8 =0.
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APPENDIX
Jacobi identities
An = oli — 0], (A1)
9,1 + Oydy — Oyd, — 300 + nb
—d,A; +d4, =0, (A2)
1Ay + B30 — 18,0 — 3.0 + Yy + 4,)0
— (dy — Aoy, + 2 (dy — 43) =0, (A3)
1Ay — 33032 — 1 3,0 + 3,02 + Yy + 4,)9
+ (d5 — A43)6, — D (d, ~ 4;) =0, (A4)
dow = (p’ — 3b, (A5)
3,0 —120,0 +16(0—2i) =0, (A6)
dd, +10,0 +1d,0=0, (A7)
0wds +13,0 +1d,6=0, (A8)
60A2—§(929 +14,6=0, (A9)
0pAs — 13,0 + 14,6 =0, (A10)
80n+§m9=0, (All}
82 +1020=0, (A12)
Foz2 + 16120 = . (A13)

Equation (A5) has been obtained from (2.1), i.e., by invoking
{2.5).

Field equations
(00): 3o0 + 13607 — 20 — it — il> — i

+lu+3p-24)=0. (A14)
(Ocx):
39,6 —nw =0, (A15)
20,0 + 3w —dyw =0, (A16)
3356 — 8y + dyo = 0. (A17)
(@B):
0,0 — 8yd, — 8yd; + 28577 + 107 + dy?
+dy? —dyd, —dyA; — %’12
=190 —du—iw+102—Yu—p)—A,  (Al8)
8,4y — 3363, + 10,0 — 3,2 + Byn
— 2ndy + (dy — A2 + Yd, + 4,0
—(d2+ 3A2)&22
= — 0,4 —d,u, (A19)

814 + 385y + 1050 + 8,2 — Aon
+2nd, — (d, — A)2 + 4 (d; + 45)0
+ (d3 + 3‘43)6'22
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= — Oyt — dyi, (A20)
8,65, + %alé — Oydy + 34, + 3,45 + 5’22é
+10?—dd+ A2 + A2 +d2 +in® —nfd
= — o +140) — Y —p) — A
+10%2 419,80 + 27, (A21)
— 8,63, + 10,8 — Oydy + OoA; + 335 — 5,0 + 167
—ddy+ A3 + AL +d} 4 —nld
=iy, —40) — Hu—p)— A +16°

+ 139,80 + 207, (A22)
Oydy + Oydy — 4026,y — 2 dydy — oA,
—dyA, + 2n6,, =0. (A23)
Bianchi identities
opt + W +pi6=0, (A24)
i p+u+pu=0, (A25)
d,p=0, (A26)
dyp=0. (A27)
Commutation relations
[eo, €] = ue, — | Oe,, (A28)
[eo, €] = — ] Ge,, (A29)
[eo &5] = ) —1{fe;, (A30)
e, e,] = —dye, —(0y;+10)e, + L2¢,, (A3l)
[e;, 65l = —2we, + ne, + A’ge2 — ,:12e3, (A32)
[es, e,] = dse, + f2e, — (03 — 10 )es. (A33)
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The exterior and flat interior metrics of an infinite cylindrical shell (surface layer) of matter are
studied, for nonrotating and rigidly rotating shells. Relations between the parameters
characterizing the exterior metric and the components of the shell’s stress-energy tensor are
established. It is shown that one of these parameters, characterizing the “conicality” of the
exterior field, is related to the energy density of the source; while another, characterizing local
nonflatness, is related to certain components of the stress tensor. A one-parameter family of
locally flat but conical exterior metrics generated by a particular type of massive cylindrical shell
is exhibited. The globally stationary but locally static exterior field of a rigidly rotating shell is
studied. The (nonlocal) parameter of the exterior field characterizing the rotation is related to the

rate of rotation of the shell as defined by the flat interior metric.

PACS numbers: 04.20.Jb

I. NONROTATING SHELL

The exterior gravitational field of an infinite rotating
cylinder of matter in general relativity is globally stationary
but locally static,' just as the analogous electromagnetic field
of a rotating charged cylinder is locally electrostatic but
shows nonlocal effects of the rotation which may be verified
through the Aharonov-Bohm effect.! The verification of an
analogous gravitational effect may be carried out using clas-
sical light waves which are entirely confined to the region
outside the cylinder of matter.' However, to study the rela-
tionship between the exterior nonlocal parameter character-
izing the rotational effects (the period or line integral of a
certain one-form, closely related to the globally timelike
Killing vector field of the metric, taken around any closed
curve encircling the cylinder of matterj and the actual rota-
tion of the source, some model of the latter is needed.

In this paper, I shall study a very simple source: an
infinite cylindrical shell (i.e., surface layer) of matter inside
of which there is a flat space-time. Since the interior is flat,
special-relativistic considerations are all that are needed to
define the rate of rotation of the shell. In the rest of this
section, I shall discuss a nonrotating shell of matter, giving
rise to a globally static exterior gravitational field. Discus-
sion of the matching of the exterior static field to the shell
stress-energy tensor will enable relationships to be estab-
lished between the components of that tensor and the param-
eters which characterize such a static exterior metric. In the
second section, I shall discuss how the static solutions of this
section may be used to generate the globally stationary but
locally static exterior metric of rigidly rotating shelis; and
the relationship between the nonlocal exterior parameter
mentioned above and the rate of rotation of the shell.

I shall use units in which ¢ = 87G = 1, and signature

+ - - -, so that timelike vectors have positive norm.
Let an infinite cylindrical shell of matter separate a flat
interior region from an exterior gravitational field created by

* On leave from Boston University.
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the shell. The empty-space exterior and (flat) interior fields
must be matched at the shell surface in such a way that the
conditions for a surface layer of matter in general relativity?
are satisfied on the shell. I shall first consider the case of a
nonrotating shell of matter, and then discuss how these re-
sults can be modified for the case of a rigidly rotating shell.

In the nonrotating case, the exterior metric will be static
with whole cylinder symmetry. The metric of such a field
may always be put in the form®

ds* = exp[2(y — Y)[(dx°) — (dx")’]
— (x')? exp( — 2¢)(dx’)?

— exp[2(¢ + p))(dx?)?,
— w0 <x’<w, xp<x'< oo,
— w<xt<w, 0<x’<2m (1.1)

Here x° is a timelike coordinate, x' is analogous to the cylin-
drical radial coordinate, x? is analogous to the cylindrical
axial coordinate, and x* is analogous to the cylindrical angu-
lar coordinate; ¢, y, and u are functions of (x° x') only; and
(x")exp u obeys the (flat) two-dimensional wave equation in
(x°, x'). In the static case, this requires that

expu =4+ B/x". (1.2)

For the flat interior region of the cylinder, assumed to be of
radius x, we may choose 4 = 1, B=0,and ¢ =y =0, to
get the usual form of the flat cylindrical metric:

dst = (dx° P —(dx"_ ) —(x' Pdxl )P —(dx 2 (1.3)

(From now on, minus signs will denote quantities having to
do with the the region interior to the shell, and plus signs will
denote quantities connected with the exterior of the shell.)

However, as we shall see, it is simpler not to make the same
assumption about the exterior values of 4 and B if we want to
match with a shell having nonvanishing mass density. Consi-
deration of the matching conditions for the shell (agreement
of the first fundamental forms of the interior and exterior

metrics on the shell, and difference of the second fundamen-

tal forms proportional to the surface stress-energy tensor)’
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shows that in this case all the components of the metric may
be made continuous across the shell on which x', = x{ >0;
however, their derivatives will not be continuous across the
shell, but undergo finite discontinuities related to the shell’s
stress-energy tensor. By requiring that 4 * + B * /x5 =1
(i.e., that u be continuous across the shell), we can assure that
x*, =x*_ for points on the shell; and it is similarly possible
to identify the values of the other interior and exterior co-
ordinates at each point on the shell. Note that continuity of ¢
and y across the shell requires that ¥ = ™ = 0 on the
shell.

The form of exterior vacuum metric is well known* for
4 = 0. Transforming it to the form (1.1), with arbitrary 4 ©
and B *, gives

[/ x! x! B+ |
ool ()l ()5 )
L 0
e B o )L BT
7/ =1n xl A x_l + xl )()
L 0 0 0
[ BH\( %o
#+=1n A++(x1 )(xl .
L 0 +

(Numerical constants in ¥ and " have been chosen to
assure continuity of ¢ and y at x;.) The metric (1.4) depends
on two independent parameters, which may be taken as a
andA4 *.(B */x})isthenequaltol — A *.x; itselfisascaling
parameter: rescaling all the exterior coordinates except x* by
a factor 1/x} multiples the entire line element by a constant
conformal factor. It is important to note that this rescaling
does not affect x>. As will be seen shortly, the range of this
angular coordinate is related to an important global proper-
ty of the exterior gravitational field. We may use the coordi-
nates x°, x2, x> on the surface x! = x; as intrinsic coordinates
for the shell (plus or minus signs are superfluous here, since
both sets of coordinates have the same values at each point
on this surface). The three-dimensional line element of the
shell is given by

do? = (dx°F — (x})(dx’)? — (dx*). (1.5)
If we denote the components of the second fundamental
forms of the surface on each side by K 3 in this coordinate

system (a,b = 0, 2, 3), then the surface stress-energy tensor
S, is given by?

Sab = (K:I; _gabK+) - (Ka; _gabK—)' (16)

(Plus or minus signs are not needed for the metric tensor g,
of the shell, since the components are the same.} A short
computation (see the Appendix) shows that the only nonvan-
ishing components of §? are

o=S0=B"/(x3), (1.7a)

pr= —Si=[(a®—2a)l —B*/x})/x}] — B /x}P,
(1.7b)

pr= —S83}=a*(1—B*/x})/x). {1.7¢)

Here o is the surface energy density, and p, and p, are the
partial pressures along the axis of the cylinder and tangential
to it, respectively. In order to discuss the behavior of this
stress-energy tensor most simply, it is convenient to set x/)
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= 1. (As mentioned above, this results in no loss of genera-
lity, but rather to a rescaling of the x°, x', x* coordinates). In
order to have a positive mass density, B * must be greater
than 0, and in order tokeep 4 * positive, B * (really B * /x;)
must remain less than 1. I shall therefore restrict discussion
for the present to values of B * between 0 and 1. For a fixed
value of B * in this range, p, and p; may be considered as
functions of @. Both are given by parabolas, with p; remain-
ing positive for all values of @ #0: the shell is always subject
to compression tangentially. The longitudinal p, is positive
fora>1+J1/(1 -B%*)anda<1-—+1/(1 — B *), turning
negative (tension) for values of @ between these limits. The
dominant energy condition * (00, — o<p,, p;<0) requires
that a be negative and greater than — B */(1 — B *). (Both
positive and negative values of p, are possible within this
range.) It is gratifying that the dominant energy condition
requires a to be negative, since a study of the geodesic equa-
tion of a test particle outside the shell shows that it is attract-
ed by shells with negative a, and repelled by shells with posi-
tive a.

In a previous discussion of this problem,* I neglected
the role of the second parameter characterizing the exterior
gravitational field, which may be taken as either B * or4 *
(relatedby4 ¥ =1 — B *,forx, = 1). Whilea characterizes
the local behavior of a test particle, 4 * is essential for under-
standing its global behavior. The casea = 0,4 * = 1 corre-
sponds to Minkowski space-time, as noted earlier,*° and is
not compatible with the existence of a shell of matter. The
casea =0, 4 © 51, however, is compatible with certain
shells: p, must equal — o and p, must vanish. The exterior
space-time is still locally flat (vanishing Riemann tensor), but
there is an effective global gravitational field, as Marder has
shown.’

Substitution of a = 0 into (1.4) gives the exterior line
element:

ds’, =(dx° P —(dx', ) — (4 *x'. +B*")dx’ )
— (dx?, ), (1.8)
which is indeed a locally flat space-time, but it corresponds

to a globally nontrivial gravitational field. Making the coor-
dinate substitutions

p=x'. +B /A", $=4%X, (1.9)
(1.10) may be put into the form

ds’, =(dx° ) —(dp) —p*dé ) —(dx* ), (L.10)

which looks like the ordinary cylindrical form of the flat
space-time metric. However, x°, had a range 0<x’, <27
(because x’, and x*  coincide on the surface x}, and x* is
the usual angular cylindrical coordinate in the flat interior of
the shell). This means that ¢ has a range 0<¢ <274 *. For
0<B " <x,, therange of ¢ will therefore be less than 27 the
exterior metric is a flat conical space-time. A discussion of
the null geodesics (light rays) in such a flat conical space-time
has been given by Marder.” It shows that null geodesics ini-
tially diverging from the same point are reconverged due to
the conicality if they pass on opposite sides of the cylinder.
They may even meet again, if they do not initially diverge too
much relative to the degree of conicality, measured by the
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extent by which 4 * differs from 1. This converging effect is
enhanced for timelike geodesics {test particles). Thus, the
shell of matter with positive energy density o acts as an at-
tractive gravitational source in a global sense, even though it
fails to produce a locally attractive gravitational field. A
shell with negative o produces a flat “anticonical” space-
time (4 * > 1), which can be shown to act as a globally repul-
sive gravitational source.

Similar results hold if @ does not vanish. The exterior
metric with a #0 takes the form

ds2+ — [(A +x1+ + B+)/x} ]Zau ”")[(a’xo)z _ (dxl)z]

— (4 +x1+ +B +)2[(x(’)/(A 1x1+ +B +}]2"(dx3)2

— [ X", + B™)/x5)]*dx?). {1.11)
By making the coordinate transformation (1.9), it can be put

into a canonical form for an empty cylindrically symmetric
space-time®:
ds2+ — (A +p/x(l))2u[1 — a)[(dXO)Z _ (dp)Z]
—p(xo/4 T p)(dg
— (A Tp/xi )X (1.12)

Thus, (1.12)also represents a conical space-time (the range of
@is0to274 * < 27if B * is positive), but one which isnonflat
locally if a#£0. A study of diverging null geodesics (light
rays) in this exterior space-time shows that a negative a (lo-
cally attractive gravitational field) serves to enhance the con-
vergence effect due to the degree of conicality (0 < 4 * < 1), as
was to be expected.

These static results are also in accord with the calcula-
tions of Fierz® and Marder® showing that an outgoing pulse
of cylindrical gravitational radiation, which is expected to
decrease the mass of the source, results in a decrease in the
degree of conicality of the exterior field.

Another interesting limiting caseis B+ = 0, a < 0. The
local energy density then vanishes on the shell, and hence
there is no conicality in (1.12). The local curvature of space-
time is entirely produced by the positive stresses p, and p;.

1l. RIGIDLY ROTATING SHELL

As shown in Ref. 1, any globally static space-time on a
manifold with nonvanishing first Betti number R, can be
used to generate an R |-parameter family of globally station-
ary but locally static space-times which coincide locally with
the initial static space-time. The manifold of the exterior
metric ds*, is R ¢ minus an infinite four-dimensional cylin-
der, the surface of which forms the shell of matter. The exte-
rior manifold is thus a manifold with a boundary. Any closed
curve encircling the cylindrical boundary cannot be continu-
ously shrunk to a point, while any other closed curve may be
so shrunk. The first Betti number of the manifold with
boundary is thus 1. So a one-parameter family of globally
stationary but locally static space-times can be generated
from the exterior metric given by (1.4), (1.1). To exhibit these
metrics explicitly, one may perform the formal coordinate
transformation

=0

x°=x°—cx, c¢=const (2.1)

Since the range of x®is — 00 <X < + o0, while x° is
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limited to the range 0 < x* < 277 {or must be considered a
periodic coordinate), this is not a proper global coordinate
transformation; therefore the resulting line element is glo-
bally distinct from the initial one, even though the coordi-
nate transformation (2.1) makes them locally equivalent.
This line element has the form (dropping the bar over x")

ds® = exp[2(y — ¥)][([dx° + cdx®) — (dx')?]

— (x')* exp( — 2¢){dx’)* — exp[2(¢ + p)ldx?), (2.2)
with the same range of the coordinates as in (1.1), and ¢, 7,
and g given by (1.4). Since the local transformation (2.1)
makes (2.2) coincide with (1.1), and a similar one may be
carried out locally on the flat interior metric, the local
matching of interior and exterior metrics on the shell of mat-
ter at x' = x proceeds in exactly the same way as in Sec. L.
The difference is that, with respect to the flat interior region,
the shell is now rotating rigidly.

Toinvestigate the motion of the shell with respect to the
flat interior space-time, the Minkowski metric written in cy-
lindrical coordinates may be used to describe the interior
region:

ds. =dt’ —dp’ —p’d¢* — dz’. (2.3)
By carrying out the coordinate transformation ¢ = ¢ + wt,
this may be put into the form (dropping the bar over ¢ )'°

ds =[1— (wp)*)dt® + 2wp’dgdt

—dp’ —p’dd* — dz*. (2.4
In this form, the curves to which the vector field v#* = 8} is
tangent are timelike worldlines rotating with the angular
velocity with respect to the interior inertial frame. On a sur-
face p = p,, the metric (2.4) reduces to
do? = [1 — (wpo)*1dt® + 2wpidd dt — pidd* — dz*.  (2.5)
On the surface x' = x}, (2.2) reduces to

do® = (dx")* + ¢ dx° dx*

— [(x3)* — ¢ }dx’) — (dx?). (2.6)
Setting
[1— (a)po)z] 1124 = x0, (a)p()]zt = ¢x¥,
LD())Z = (xtl) )2 — ¢ = x, z=27 2.7

makes the two line elements identical. Compatibility
between the first two equalities of {2.7) requires that

¢ = wlpo/11 — (wpy)]'". (2.8)
Matching the exterior metric to the interior metric, as dis-
cussed above, on the surface x' = x; is then equivalent to
matching it with the interior metric (2.4) on the surface
x' = [(po)* + ¢]"/2. The streamlines of the shell stress-ener-
gy tensor, in these coordinates, have v* = 8} as a tangent
field. As mentioned above, these represent timelike world-
lines rotating with the angular velocity w with respect to the
interior inertial frame. A nonzero value of the external pa-
rameter ¢ reflects the fact that the field (2.2) is globally sta-
tionary': The one-form or covector V,, = &, /& ?, where £

= 8", is the globally timelike Killing vector of (2.2}, has

period $ ¥, dx* = 2sc around any closed curve encircling
the cylindrical shell of matter. Equation (2.8) relates this pa-
rameter to w, the rate of rotation of the cylinder as defined
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with respect to the interior inertial frame. For a fixed value of
Po, the radius of the cylinder with respect to this inertial
frame, ¢ is a monotonically increasing function of  for
0<w < w, = 1/p, (the velocity of points on the shell must be
less than the speed of light). As @ varies between zero and wy,
¢ varies between zero and infinity.

In Ref. 1 there is a discussion of how a classical optical
interference experiment in the exterior region could be used
in principle to ascertain the value of c.
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APPENDIX
The unit tangent to the surface x' = x; is given by n,,
=exply — #)5,. If £ (@ = 0, 2, 3) are intrinsic coordinates
on this surface, then the coefficients of the second fundamen-
tal forms of this surface in these coordinates are given by
ax* dx”
e FEL

Kab = n;;;v (AI)
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Since we are using x°, x?, x* as intrinsic coordinates on this
surface, and since all metric components depend only on x',
it follows that

Kail; = %ga%,l s (Az)

where the derivatives on the rhs are evaluated on x' = x;.
Using (1.1), (1.4), and (1.6}, Egs. (1.7) follow.
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A covariant expression for the massless spinor fields in terms of Hertz potentials is given,
assuming that the space-time admits a congruence of null strings defined by a multiple Debever—
Penrose spinor. The metric of these spaces is also given in a covariant form.

PACS numbers: 04.20.Jb

1. INTRODUCTION

Searching for exact solutions of the Einstein field equa-
tions, the assumption of the existence of a congruence of null
strings (two-dimensional totally null surfaces) allows one to
reduce them, in the case of vacuum, to just one differential
constraint."* When there are sources present a similar sim-
plification is obtained when, additionally, one imposes cer-
tain conditions on the energy-momentum tensor of the mat-

er.>* As a consequence, the conformal curvature is
algebraically degenerate as in the case of vacuum. In order to
achieve this reduction, it becomes necessary to deal with
complexified space-times, for in real ones (i.e., with Lorent-
zian signature) there are no such surfaces.

Moreover, the equations for the massless spinor fields
(the anti-self-dual ones if the congruence is defined by a self-
dual two-form or vice versa) are reduced to a single wavelike
equation for a scalar potential in terms of which the solution
is expressed* when the space-time admits a congruence of
null strings and the algebraic degeneracy of the conformal
curvature is assumed.

In the case of Einstein’s equations, as well as for the
massless spinor fields, the integration process did depend on
the existence of coordinate systems adapted to the con-
gruence, and the respective solutions were given in terms of
null tetrads induced by these preferred coordinates. It is of
interest to establish these results in a covariant way in order
to find their underlying structure and to apply them to any
space-time belonging to the class referred to above without
making reference to a particular coordinate system. In this
paper a method is given to obtain such covariant expres-
sions. Previously, Plebanski and Robinson® have obtained a
covariant description for the structure of #” spaces (“half-
flat” complex space-times) by a different approach to that
followed here. The present work complements, in a certain
sense, the one of Plebafiski and R6zga® on null strings.

Even though one has to consider complex space-times
in the derivation presented here, all the final results apply as
wellin the case of real space-times. In Sec. 2, some basic facts
about congruences of null strings and their relation with null
massless fields are established. Some similar results for the
case of real space-times can be found in Refs. 7 and 8. In Sec.
3, a covariant expression for the solutions of the massless
spinor field equations in terms of Hertz potentials is ob-
tained. In Sec. 4, a covariant description for the metric of any
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space-time which admits a congruence of null strings defined
by a multiple Debever—Penrose spinor is given. The formal-
ism and notation used here follow Ref. 9. A/l the spinorial
indices are raised and lowered according to the conventions
v® =y, e'®, ¥, = €,p9¥®, and similarly for dotted in-
dices.

2. NULL MASSLESS FIELDS

In this section it is shown that in a space-time which
admits a congruence of null strings defined by a multiple
Debever—Penrose spinor, one can construct null massless
fields of arbitrary spin s>} without any restriction on the
Ricci tensor.

Let d,; denote a null tetrad (with 3,3,

= — 2€,c€5p). A nonvanishing locally defined spinor field
/, determines a two-dimensional distribution spanned by
the vector fields

vp=I"345. (2.1)
This distribution is involutive, and hence integrable, if and
only if

IV 1y =0. (2.2)
As a consequence of (2.2), the covariant derivatives V, v,
are linear combinations of v.. Therefore if I, satisfies the
condition (2.2) then the vector fields v, are tangent to a con-

gruence of two-dimensional geodesic surfaces. Since v, v,
= 0, these surfaces are null and they are called null strings.'®

In a real space-time (assuming that d,; = dp;, where the
bar denotes complex conjugation) condition (2.2) means that
the vector field /47 5 (wWhere / L 7?) is tangent to a
congruence of shear-free null geodesics.

Let ¢ be a nonvanishing function. The spinor field ¥/,
satisfies Eq. (2.2) if and only if /, does; then both define the
same congruence of null strings. Based on this ambiguity,
one can impose on the spinor field /, the further condition®

vV, (1B)y=0. 2.3)
Indeed, in a spinor frame such that [, = 8, Eq. (2.2} is equi-
valent to

I'1(0,6) =0, (2.4)
where I ,, and I, denote the connection one-forms for the
tetrad 9,5, hence, V (¢ YI®) = ¢*6 7 [9,cIn 7
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+ I'1\(32¢) — 2T (0, ¢)]- Therefore, V (¢ $I%) = 0 if
and only if ¢ satisfies the conditions

di4ln ¢2 =20,(0,4) — I1(024)- (2.5)

From the relation [X,Y] = V, Y — VX, the second struc-
tural equations, and (2.4) one finds that

8,0, = — [[a0*) + T *%(0,5)]914, 2.6)

and, denoting by C,zp and C, 3¢5 the components of the
Weyl spinor,

Ciin=0,
—4C, = alA(rn(azA ) + [r12(alA)

+ T *%(0,5) ] 11024, @7
—2Cy2 zalA(FIZ(alA ) +FAB(511})F12(‘91A )-

Thus, applying ,” to both sides of (2.5) one obtains an identi-
ty, showing the integrability of those equations.

Conversely, contracting (2.3) with /5 one finds that the
spinor field /, satisfies Eq. (2.2). In other words, there exists
a function fsuch that the spinor field f* /? satisfies the mass-
less field equations of spin 1 (V - f*1® = 0)if and only if/,
defines a congruence of null strings. In a real space-time this
result is the spinorial image of a well-known theorem of Rob-
inson.!! A .

Defining the two-form 3=/, g*' Al g, one finds
that the integrability condition (2.2) is equivalent to the exis-
tence of a one-form a such that d3 = a A X, while Eq. (2.3)is
equivalent to d¥ = 0. The tangent vectors v satisfying
v 1 % =0 are those which are tangent to the null strings
defined by /.

On the other hand, if there exist a function fand a
spinor field /, such that V , (A" I*: -1"*) = 0, then, as-
suming s3> 1 and taking /, = &2 as before, one finds that /,
satisfies Eq. (2.2) and that the function fmust be a solution of

i Inf= 2553, 4) — I1\(3,4)- (2.8)

Applying 3 { to both sides of this equation and using (2.6)
and (2.7) it follows that

(s—1C=0. (2.9)
Thus, for s> 1, a necessary condition for the existence of
massless fields of the form f*' .-/ “* is that the spinor field /
must be a solution of (2.2) and at the same time, a multiple
Debever—Penrose (DP) spinor (i.e., /% I°C 5, = 0). An
alternative derivation of this result can be found in the more
general discussion given in Ref, 8.

The converse is also true. In fact, given a spinor field /,
which satisfies (2.2) and is a multiple DP spinor there exists a
function ¢ such that,*

PVl =1,13,: 1n ¢. (2.10)
Then, assuming that (2.3) holds, it follows that
Vpel? = —13,: In ¢,
(2.11)
lB VgclA = %IA lBaBC In ¢
Therefore, applying repeatedly (2.11) one finds'?
V(@' MM 1) =0, (2.12)
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By multiplying ¢ ' ~*/' -/ ** by a function f, one gets
another solution of (2.12) if and only if fsatisfies 3,5 f
= 0. This last condition means that f'is a constant on each
null stnng or, equivalently, that f'is an arbitrary function of
¢"' and ¢* (see Sec. 3)."*

3. MASSLESS FIELDS AND HERTZ POTENTIALS

In the rest of this paper it will be assumed that the
spinor field /, is a multiple DP spinor which defines a con-
gruence of null strings. Asis shown in Ref. 4 the integrability
condition (2.2) implies the existence of a pair of functions ¢',
q2 such that

1, g% =v2I®.dgS, (3.1)
where (/ 5.) is a nonsingular matrix. Defining the functions
p” by the conditions

199cy p* = ~ V2671, (3.2)
where ¢ is a solution of (2.10), it follows that the functions q

and p* can be used as local coordinates and the set of vector
fields

Jd
adi, =V7£AjE\/—28A,

(3.3)
3, = v24* (@ — o, ) —26°D,,
constitutes a null tetrad with
Q% = (1/VHI P9y p, (3.4)

where m” is a spinor field such that m*/, = 1.

With respect to the tetrad 4, induced by the coordi-
nates ¢, p*, the most general solution of the (“right”) mass-
less field equations, V¥, 4,, = 0, can be written in terms
of a scalar potential H' in the form

Vo aa, =011, 014010, H', (3.5)
where H ' satisfies a wavelike equation'® (see Ref. 4). In order
to express the components of the field (3.5) with respect to an
arbitrary null tetrad d 5, it is necessary to replace the deriva-
tives d | ; by covariant derivatives. To this end, one begins by
noticing that the null tetrads d,; and d,,; are related by

Fup =M, M 3y, (3.6)
where

MBD=A ~1/21DB = _A 1/21 —BID

M]C =4 1/2¢ —21 C’

(3.7)

M2C= —A 1/2¢ z(mC+ (IC/Z\/Z) ¢ —2

X1 ~*m®3p, p*)
=_ A2 ¢ 255C
A =det!4,.

Denoting by I, 5, ;3 and I" /,5,I" ,; the connection
one-forms for the tetrad d,,; and 3 /,;, respectively, from
(3.7) one gets

Iy = 1Pl A0 — 4 V21,504 V2 7 A,

(3.8)
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therefore,
dl 2P = —1°2°r*,
+14Br"P. — 31 5 '2d1n A. (3.9)
According to (3.1), the two-form 2 defined in the pre-
vious section is given by
3= Adq" Ndg,, (3.10)

hence,d¥ = dIn A A 3. Thus, if /, satisfies Eq. (2.3), then 4
is a function of ¢* only and conversely. In the forthcoming it
will be assumed that Eq. (2.3) holds, hence vg4 = 0 [see Eq.

2.1)].
Using the explicit expression for the one-forms I’ ;5
(see Refs. 2 and 4), Eq. (3.9) yields
vsl = —174PT " (vg)
+ 4851 ~ds + 851 AP In ¢ (3.11)
[This equation can also be obtained from the condition,
0=v2ddq“=d(l ~'“;1, g*?), using Eq. (2.11).] There-
fore,if @5 5 denote the components of a spinorial field (not
necessarily symmetric) referred to the tetrad d .z, then by
Eq. (3.11) one gets
vs(l Bl APy )
=1 Bl TP V(9 Py, )
+ (GSB, ¢b32...1}" + -+ €38, ¢B‘...D)vbln ¢}, (3.12)
where
Vi=IVs. (3.13)
Returning to Eq. (3.5), from Egs. (3.6) and (3.7), using
repeatedly (3.12) one finds
Wz"i.w!n =(— 1)2s¢ 25+ 1y —1(5: _._IA—ZS:BZS
X(¢ Wy )@ VPV, JH .
Thus, since V(¢ ~'/2l,) = 0 [see Eq. (2.11)], from (3.7) it
follows that the components of the field with respect to the
tetrad d,; are given by
Wiy, =4 7@ PP P2ig 2
XVs,4,8 7Y 54,6 7V g, H
R A R A T P TV 5, H,
(3.14)
where
H=A4 ~*H' (3.15)
Due to (2.12), the expression (3.14) can be written in terms of
a D (s,0) null Hertz potential
Vi, =97 "V, 6 7V 54,
i Vg HE I 1]
Evidently, by redefining H, the factor ¢ ' ~* which ap-
pears in the Hertz potential can be absorbed. Moreover,
since any nonvanishing factor can be absorbed into H, Eq.
(3.16) holds even when the spinor /, does not satisfy condi-
tion (2.3). For example, in a spinor frame such that /, = &7,
using (2.10) one finds that Eq. (3.16) reduces to the expres-

sions for the components of the massless spinor fields found
by Cohen and Kegeles.'® The relation between the Cohen

(3.16)
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and Kegeles potential ¢ and the potential H defined above is
givenby ¢ =¢ ' ~*H.

Substituting the expression (3.16) into the massless field
equations, VA%, . =0, one obtains a differential condi-
tion that the He_rtz potential has to satisfy. However, the
equations /, V**'¥, . =0 are automatically fulfilled by
(3.16). Hence, the field equations are reduced to
me V4w, . =0, where mg is any spinor field such that
m® I, does not vanish. Thus, in the case s = 1, the Hertz
potential has to satisfy a single linear partial differential
equation of second order.'” In the case s = 1, by using the
ambiguity in the definition of H, one can further reduce the
field equations to one linear partial differential equation of
second order.>'?

For s > 1, there exists integrability conditions which re-
strict the solution of the field equations. These conditions
involve the conformal curvature and are expressed by'®

Ciaan ¥ (3.17)

A similar condition holds for the left massless fields. These
algebraic restrictions imply that the existence of null mass-
less fields require the algebraic degeneracy of the conformal
curvature (cf., Sec. 2).

If the integrability conditions (3.17) are fulfilled, then
the potential H is subject to a single second-order differential
constraint. In the coordinates q’", p?, this condition is ob'-
tained by commuting the derivatives d, ,...,d,, , andD?in
Eq. (4.3a) of Ref. 4.

By using an expression analogous to (3.16), Penrose'’
showed that in the case of flat space-time, the massless fields
satisfy the peeling theorem, assuming that the scalar poten-
tial (analogous to H ) has an appropriate asymptotic behav-
ior.

ZA . . —
By =0

4. THE COVARIANT FORM OF THE METRIC

Now, the metric determined by (3.3) will be writtenina
covariant way using a similar procedure to the one of Sec. 3.
From Egs. (3.6), (3.7), and (3.3) one gets

Oup =M MP, 0,
- x/z[wl,-,bﬁz,,ab EYELN) _‘9__}

aD

_ , q
— \QIA /- IDB QbCaC. (4.1}

The tetrad
%345 EVQ[ ¢ 2P, 3, — 1~ '241, %,] (4.2)

corresponds to a conformally flat metric (specifically, °d , ; is
a null tetrad with respect to the conformally flat metric

09 = 2¢ ~2dq* ®dp,), while the remaining term in (4.1) can
be written as ¢ ~21,02,%1 535, where

Q=1 1 =23 Qcp. (43)
Therefore,
845 = 0ap + & 2 0yl (4.4)

The connection one-forms for the tetrad J /,; (see Refs.
2 and 4) can be decomposed into a conformally flat part,
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°r s and °I" ;5 (which is obtained by setting Q,; = 0) plus
Q.- dependent part

r n= ’r s
[, =°T%, +16%0 (¢ ~*Qus)dq”,
I, =T +¢*D*(¢ *Qusldg” (4.5)
+ ¢Q %Dy ¢ dgy + 316 dps),
[ =T + 6204 ¢ ~*0p\cdg®
+ ¢ 'Qus9c ¢ dg".
Hence, the connection one-forms for the tetrad d,,; are given
by
I, p= MCAMDBI“'CD — M., dM g
=Ty 5 — M, ;M 5,6°3°($ "*Qcp)dg”
+ M M, [ ¢°D (¢ *Qcpldg”

+¢Q (D dgy, + 3 dps)], (4.6)
where
Iy s =M, MPs°" ., — M, dM p. (4.7)
And, similarly,
Cip = — 1% 7' e +1 Zadly)©
= — 1371 7', K4 0 ¢ TQbik
+ Q¢pdi In @ 1dg~, (4.8)
where
O e =%l 1 My + 17 dl) . (4.9)

The one-forms °I", 5 and °I",; are the connection forms for
the tetrad °d ;. ‘
Since I = — Al =, by Egs. (4.8), (4.1), (4.3), (3.12),
(3.1), and (2.3) it follows that
Fup = Tap + Vol ¢ 2 P2y 51c1e. (4.10)
On the other side, in order to express the derivatives
appearing in (4.6) in a covariant form, from Egs. (3.8) and
(3.12), using the explicit expression of I" ’,;;, one finds
.51
= —1P.I?,(0,5) +41%:0,5 In A + Y5, " In g
—1681°:0,p In¢ + ¢ 7L Ipel®
X [VeP02% — 029 Ing . (4.11)
However, in (4.11) besides ¢,42,, and /, there appear
the derivatives of the function 4, which depend on the choice
of the coordinates ¢* made at the start. One can eliminate
these terms by noticing that from Eq. (4.6) one has
dMCB = —MAT,5 — MDBF’CD;
hence, substituting (3.7) it follows that
V4TV )= — MPTyip = — A%,
— 47",
{4.12)
via 1/2‘75 2’718) = MDBFQD =4 1/2¢ z’ﬁsrfz
+ 4712 2, Y,
with the action of the covariant differential V defined by
Vi, = — Ve, )g°C. Then, using the explicit form of
I" ;5 and Eqgs. (3.6), (3.7), (4.3), and (3.12) one gets
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Vel = %lB [3‘9,4(': In¢g +d,:In4
+ ¢ LIV LR (470ek)]

+€,5!P0p-1In¢ (4.13)
from which it follows that
Vaclpls =1l3l0,:In4 + 31(31saA o Ing
+ & Ul 1PV R (670 g) (4.14)

Finally, substituting into (4.6) after some work one finds that
I'yp = OFAB - %V(AC( ‘é"le)ﬂCbls)gSD
+ %¢ _21A IB-QRC [VSR( ¢ _zliqﬂCDlP)
— 3¢ pf2;c1%95, In g ]g”’. (4.15)
The components of the right conformal curvature are

easily obtained from their expression referred to the tetrad
d’,5.%* From Egs. (3.6), (4.3), (3.12), and (2.3) one has

Cisco = — 318V ¢ Visp ¢ " 10ep,.  (4.16)
The components of the left conformal curvature referred to
as an arbitrary tetrad can be obtained by a similar computa-
tion. However, this computation is considerably more in-
volved than the previous ones. It requires knowledge of the
covariant derivatives of /7, , which are given by (4.12). The
result, written in a form which explicitly shows the algebraic
degeneracy of this spinor, is

Ciscp= — 14 ¢ —ZI(A IzVcRe _ZVD;SA¢ s

+1¢ ~Ldslcly

X [44 T3VR423,5(4 202 70025)

+ ¢ MV (B2 MO (02 T2 g) ).
The derivatives of the function 4 can be eliminated by using
Eq. (4.14).

If one assumes that the Einstein field equations are sat-
isfied, then Q,; can be written in terms of a key function and
some constants of integration provided that the energy-mo-
mentum tensor of the matter has a constant trace and satis-
fies M 12 T pep, = 0, where T ¢, denotes the spinorial com-
ponents of the traceless part of the energy-momentum
tensor.>* Clearly, this condition is satisfied in the case of
vacuum.'? Using the procedure presented here one can find
02, and then apply the general relations derived above.

For example, in the case of vacuum with 2V ,.l, =0
(called Case I in Refs. 1 and 2) ¢ is a function of qR only and
the object O, is given by

Qip = —04930" — 3 °Lups),
where @' is a function which has to fulfill a partial differen-
tial equation of second order involving only quadratic non-

linearities and L, = L ,(g®). Then from Egs. (4.3), (3.6),
(3.7), (3.12), and (2.3) it follows that

D, = — 16 Ve, VppOITP — 3¢ % ),
where

0=4 0,
[cf., Eq. (3.15)] and

(4.17)

Ea=l""ULe, mp=l""" p.
Using Eq. (3.12) one finds that, in this case, the fact that L , is
a function of ¢® only amounts to /*V 3£~ = 0.
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5. SOME FINAL REMARKS

According to the terminology of Ref. 18, Eq. (4.4)
means that the metric of a space-time which admits a con-
gruence of null strings defined by a multiple DP spinor is KS
conjugated to a conformally flat metric °. Denoting by °V
the (conformally flat) connection corresponding to °g and
taking °V ,;="V., _, from Egs. (4.4), (4.6}, and (2.11), one
finds

(]VABIC = VABIC + %¢ - llA lclsVSR (‘15 B lﬂBR)‘ (5-1)
Thus, the spinor /, also defines a congruence of null strings

in the structure with the metric °g and from Egs. (5.1), (4.13),
and (4.4) it follows that

OVARIC = %IC [308,48 In ¢ + OaAB InA4 ]
+ €,01P%,5 In ¢ {5.2)
The normalization condition (2.3) is equivalent to the

existence of a vector field Z ,,, the Sommers vector,*® such
that

Vaple =3Z 51 + 26,072, (5.3)
However, if ¢ is a nonvanishing function such that /9 ,, ¢
= 0, then !, also satisfies (2.3) and Z ,; 1s replaced by Z
+ 19,5 In ¢. Thus, given a congruence of null strings, the
Sommers vector associated to it is defined modulo these
transformations. By comparing Egs. (5.3} and (4.13) one sees
that the Sommers vector associated to the congruence de-
fined by /, can be chosen as

Zyy =330 nd + 10 " LIPY R (3205
While from (5.2) one finds that, with respect to the confor-
mally flat structure

OZAB = %0(9,”; in ¢

It should be remarked that the metric % is not uniquely
defined since it depends on the choice of coordinates q', p*,
and the function ¢. If  is another solution of (2.10) and %, p*

is another set of coordinates constructed as in (3.1} and (3.2)
then %g=2¢ ~*dq" ®, dp, =g + 2p¢ ~*(07" /Iq")
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X (3p4/94°)dq” ® , dg°, wherep=6 /4 *isafunction of g*
only and p, = p~ (3¢ /0G" ) p¢ + 04, where oy = 0,4{g").
In general, the metric °%g will be complex. If 3, ; is Hermitian,
then not necessarily each term in (4.4) will be separately Her-
mitian.

Finally, it is easy to see that the Egs. (4.4, (4.10), {4.15),
(4.16), and (4.17) apply even when [, does not satisfy the
normalization condition (2.3).
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An eight-dimensional Riemannian geometry is shown to be the basis of a nonsymmetric theory of
gravitation. A hyperbolic complex structure is imposed and the group structure is

GL(8,R }>GL(4,R ) ® GL(4,R )} DGL(4,R ). Octonion and quaternion division algebras are used to
represent geometrical quantities and spinors. A Lagrangian is constructed that is related to
supersymmetry and supergravity theories. The group structure for a hyperbolic octonion scheme
is GL(8,95)}—>GL(4,0,)~GL{4,95) ® GL(4,9,,) 2 GL(4,94), while a simpler scheme based on
hyperbolic quaternions is GL(8,C)—GL(4,¢;)~GL(4,C) ® GL(4,C)D GL4,C).

PACS numbers: 04.50. + h, 02.40.Ky

1. INTRODUCTION

The nonsymmetric theory of gravitation'~ in four real
space-time dimensions, based on a nonsymmetric metric
8uv =& (v + 8 .v1 has a natural geometrical formulation in
an eight-dimensional space.” The metric 8,., and its conju-
gateg,, (8., = & .. — & uv)) canbeassociated with two tan-
gentspaces T, and 7', and the D = 8 space can be described
by the product T, X T';. In Ref. 5, the conjugate metric g,,,.
was related to the hypercomplex numbers € with € = + 1,
sothat g5, =g, + €8(,.and &, = g(,.) — €8 .- Such
hyperbolic complex numbers were used by Gddel® in terms
of “split” quaternions or “hyperbolic’” quaternions, which
belong to a real subalgebra of the complexified quaternion
algebra that is not equivalent to the ordinary real quaternion
algebra.

In the D = 8 space the geometry is (pseudo-) Rieman-
nian and the metric is symmetric,

(54 =12,....8). (1.1)

Indeed the g5, can be written as a matrix

g,uv gﬁv)
8xa = (g ; (1.2)
wv 8w

where in this notation® g, =g, (u,v = 1,2,3,4) (@,v
= 5,6,7,8), 8av = — Buw» and v = 8w = — 8uv-

In the following we shall be mainly concerned with the
bein and spinor structure of the theory. Spinors have some
unique properties in D = 8 spaces which we shall discuss
below, and they can be associated with quaternions and oc-
tonions. Such an association suggests an intimate relation to
supersymmetry and supergravity.’

854 = 8ax

2. ACHTBEINS AND SPIN CONNECTIONS

Since the metric in D = 8 space is symmetric we can
write it in terms of “achtbeins” e% (4,5 = 1,2,...,8) as®

gs4 = €3€4 45, (2.1)

where 7, =diag(— 1, — 1, - L, + 1, +1,+1,+1,~1)
and

OE4(x
egz( e x )) : (2.2)
axz x=X
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Here £ 4 denotes a locally “inertial” frame at each point

x = Xinour D = 8 space. We choose the signature of our M,
manifold such that the number of spatial dimensions is s = 4
and the number of time dimensions is ¢ = 4. The achtbeins
satisfy

eseq =08% (2.3)
and

esep = 6% (2-4)
Then,

8ap = €1€30 54 = Nap- (2.5)

We can introduce a tangent space covariant derivative in the
form

D,=é (ai +n;), (2.6)

Xs

where (2 is the spin connection given by

_ i [AB] A d
2: = 5 e esate). 2.)

The 0,5 | are a set of constant matrices that are skew sym-
metric in 4 and B and satisfy the relations

[UAB’O'CD] =Nc8%4p — Nca¥sp + NpsCca — NpaTcs-

(2.8)
The achtbeins e satisfy
dses +(25)zef — TS e =0, (2.9)

where I" §, is the connection on the principal bundle of lin-
ear coframes in the D = 8 space. We can express I in terms
of e and £2:

Tspo =T34 810 = Nap €4 + (Q5)Ee Jeh- (2.10)

If we perform the transformation

ey =Ufhe?, (2.11)
then the metric (2.1) remains invariant if U is an element of

SO(4,4). Demanding that I" also be invariant under this
transformation, leads to the equation

(255 = [UR; U - 0:U)U ~']5. (2.12)

Since the £2; transform like the generators of SO(4,4),
then
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05804 — &an rf\:ﬂ —8aa '35, =0 (2.13)
and the I" acts in the D = 8 space as the connection coeffi-
cient for the metric in the sense of Riemannian differential
geometry.

A calculation gives

([DZ’DA ])A = (RzA )g’
where

(RZA g = Z(DA)g - aA('Q).‘)g + ([‘{22"0/1 ])}4;‘ (2-15)

We can now form a D = 8 scalar curvature

(2.14)

R =n"eSep(Rs,)e. (2.16)
By using R we can form our Lagrangian density
% =eR, (2.17)

where e = det(e}).

3. REDUCTION TO D = 4 SPACE-TIME MANIFOLD

Our eight-dimensional vector space can be described in
terms of the tangent space’

T, =T.XT,, (3-1)

sothat elements of 7', are ordered pairs of vectors (X, Y ). The
fiber bundle L ‘(M) associated with a given D = 4 real mani-
fold M, of T is

L'(My) = L (M)Xo1sr/GL,R ), (3.2)

where GL(4,R ) has a natural (subgroup) right action on
GL(8,R ). We introduce a hyperbolic complex structure J on
R % with J? = + 1, that reduces GL(8,R ) to
GL(4,R ) ® GL(4,R ) while preserving J.

We now choose one of our D = 4 space-time manifolds
M, to be a constant hypersurface in our D = 8 manifold M,.
This fixes the suffixes 3, A, etc. to the values u, o, etc. that
take on the values 1,2,3,4, i.e., we “freeze out” i1, = 5,6,7,8.
Then the connection I";;; denotes the 4 X 82 degrees of free-
dom of a GL(8,R ) connection over M. We now require that’

VJ =0, (3.3)
where V is the covariant derivative operator defined by
Tie. =V, e, (3.4)
with e = ef dx, (u = 1,2,3,4). The condition (3.3) yields
Irs,=rIgg, (3.5a)
cg=—T%g, (3.5b)

and we are left with the 2 X 4* components of the connection
over GL(4,R ) ® GL(4,R ). We thus have a complex-valued
connection in M,:

I =rt +et,. (3.6)

In familiar notation

re=ri,, +et,., 3.7)
with I"f,“,, E%(Fﬁv + Fﬁy) = rﬁv and

It =M}, —I'},) =T}, . Then the conjugate connec-

: : A i A Tred A3
tionis 'y, = rE".V) — GI‘[WJ and I", —{"iﬂ is a “hyper-
complex” Hermitian connection. The metric also has a (hy-

percomplex) sesquilinear form
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g;,v = gyv + é-g;,'tv (38)
and g,,, is hypercomplex Hermitian,

gftv = gf//z " (3 9)
In terms of hypercomplex vierbeins e = e}, + e, we have

8o = Tap€l  (mvab =1234) (3.10)

Since € = 1 the 8, acts as a “real” metric and does not have
any ghost poles in the D = 4 version of the nonsymmetric
theory of gravitation.® This is why we prefer working with
the hypercomplex number structure which forms a ring, in
contrast to the Hermitian structure, based on ordinary com-
plex numbers (J? = — 1) that form a field. The Lagrangian
density in terms of our projected complex-valued tensors on
M,is

L =(—g)"(ag" " R i (3.17)

where a and b are real parameters. It was proved in Ref. 10
that .7 is pure real and is the Lagrangian of the nonsymme-
tric theory of gravitation.'™ Note that the second term in
(3.11) is the generalized Ricci scalar in the nonsymmetric
theory, while the first term is the trace of the second contrac-
tion of the generalized Ricci tensor. The latter is zero in four-
dimensional Riemannian geometry but nonzero in the pres-
ent case due to the antisymmetric part of the hyperbolic
complex metric g, .

+ bgcva ca ),

payv

4. EIGHT-DIMENSIONAL SPINORS

In D = 8 space a general spinor ¥ has sixteen compo-
nents. We write ¥ as

W= (Z) (i=12,.,8). (4.1)
A rotation trlansforms (4.1) as

W' =M, ¥ (4,B=12,.8), (4.2)
where M, are 8 X 8 matrices. The Dirac equation is

(iD, "+ mW¥=0, (4.3)

where D, is the covariant differential operator in Eq. (2.6)
and the eight matrices I, satisfy
{Fy gl =20, AB=12,..8). (4.4)

The smallest nontrivial representation of the I”, has to be 16-
dimensional. We choose an Hermitian representation for I",

r 0 aA)
,.=(ﬁA o) (5]

where all elements in (4.5) are 8 X 8 matrices with af, = a,
andBY =p6,.
A vector in M, can be represented by
8

A= 3 a,r+ (4.6)

A=1
An infinitesimal rotation by an angle 8 in the 4,B plane is
determined by the operator

My =1+16I,T (4.7)

and
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A'=M  AM . (4.8)
The quantity
Y'BY (4.9)

is invariant under rotations, where B is a matrix satisfying
B’=1.

In an eight-dimensional space, the eight component
spinors ¥ and ¢ and the vector A are equivalent, since they
all three have the same number of componentsina D = 8
space. Let the dimension of ¥ in spinor space be 2*. We then
have D = 2vand D = 2v — 1 for even and odd D, respective-
ly. The dimensions of the subspinors ¥ and ¢ for even D is
2¥~ 1, Only for D = 8 is D = 2"~ ! satisfied, which makes
D = 8 a special space in that the principle of “triality” is
valid,''""? i.e., a rotation by an angle ¢ induces correspond-
ing rotations by angles 6 in A and v and ¥, ¢, and A are
equivalent and cannot be distinguished.

5. QUATERNIONS AND OCTONIONS

A division algebra is a linear algebra with an identity
and an inverse for every element except zero. If a norm N
exists then

N({AB)=N{4)N(B), A,Bed, NeR (N>0). (5.1)

Hurwitz’s theorem'* states that there are only four such al-
gebras. Their elements are identified, respectively, with the
real numbers, the complex numbers C, the quaternions g,
and the octonions O (Cayley numbers). The existence and
properties of division algebras have been related to those of
supersymmetric field theories in various higher-dimensional
spaces.'® There also appears to be a relation of division alge-
bras to supergravity.

Octonions are based on the eight units e;,e,,...,e; that
satisfy

el =e, 1= —e, &= —e (k=23,.8),

(5.2)

{ece} =6, (k]=234,..,8).
We shall use split octonions or hyperbolic octonions defined
by

s o _ I3 2 -2 —
J1=¢€,s =€y Ji=1le, J,=e¢,

T =Ji (k=34,..8),
Uksdi] = —6u (k1=3,4,..8), (5.3)
where / is the ordinary pure imaginary number (i = — 1)

which is assumed to commute with alle, (4 = 1,2,...,8). A
hyperbolic octonion can be written as

C=cji+ca+c3jz+ -+ Csjs (5.4)
and the conjugate hyperbolic octonion is

C= C1jy = C2/2 + €33+ = + Cg (5.5)
Then the norm of C'is

NO=CC=c +d - —c& ——22. (5.6)

Hyperbolic octonion multiplication is noncommutative
and nonassociative.

We now represent our achtbeins in terms of the eight
hyperbolic octonions in the form

E; = e:‘:jl + ef‘:jz + e+ esz Js- (5.7)
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Our eight-component spinors ¥ and ¢ are represented by
V=91 + Y2)o + -+ Yss (5.8a)
b=djit+dap+ -+ P Js- (5.8b)

Thus our eight-dimensional tangent space has hyperbolic

octonion achtbeins and spinors that are noncommutative

and nonassociative.

The Lagrangian density .7 in (2.17) is now a scalar’
density invariant under the transformations of the group
GL(8,g,) or GL(32,R ), where g, denotes the hyperbolic
quaternion algebra. The reduction to a four-dimensional
manifold, as described in Sec. 3, is done through the group
reduction

GL(8,9,,)>GL(4,0,,)~GL{4,g,;) ® GL(4.94).  (5.9)
The imposition of a metrically compatible connection, then
yields the reduction

GL(4,q;) ® GL{4,¢94)—>GL{4,q,).

In (5.9) O denotes the hyperbolic octonion algebra.

We should note the isomorphism SL(8,q,)=SU*(16)
which is important for our octonion space O, .

We shall use hyperbolic quaternions in the form

(5.10)

Ji=e, j.=1le, (k=234), (5.11)
J% =é .;k = —Jjks

and
{jk’jl} = - 5}(1 (k,I = 2,394)~ (512)

Then the vierbeins e;, in the four-dimensional quaternion
tangent space Q, and the four-dimensional manifold A, are
represented by

e, =e ji+e, j+ejs+el s (5.13)
A four-component spinor ¥ is represented by
V=91t oo+ ¥3/s+ Yada (5.14)

The eight-dimensional hyperbolic quaternion tangent space
Q. =0, XQ, is described by the transformations of the
group GL(8,C). The latter group preserves the metric (2.5).
We can also consider the invariance of the quaternion space
in a real D = 16 space under the transformations of
GL(16,R ). The reduction to a D = 4 space-time manifold is
achieved through

GL(8,C}~GL(4,g,,)~GL(4,C) ® GL(4,C)}—GL(4,C).
(5.15)

Thus the group that preserves the D = 4 metric (3.10) in the
four-dimensional tangent space Q. is GL(4,C ) which gener-
alizes the corresponding (gauge) group GL(4,R ) in the tan-
gent space T, discussed in Ref. 5.

The Lagrangian .% in our hyperbolic octonion tangent
space O, is an interesting candidate for a supergravity the-
ory. But the .# in the hyperbolic quaternion space
Q0 =0, X0, isasimpler theory, since the algebra is associ-
ative.

6. CONCLUSIONS

We have shown that the nonsymmetric theory of gravi-
tation has a unique geometrical structure that is (pseudo-)
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Riemannian in a real eight-dimensional space with the signa-
ture(— — — — 4+ + + + ). A hypercomplex structure
is imposed as in Ref. 5, and the group GL(8,R ) reduces to
GL(4,R )® GL(4,R )DGL(4,R ). The spinors in the D = §
space can be constructed and they satisfy the principle of
triality. A Dirac equation can be written in terms of a Clif-
ford algebra, based on eight matrices I, . The principle of
triality, which says that e, ¢, and ¢ are indistinguishable,
already suggests a supersymmetric structure in terms of a
discrete symmetry that is naturally built into the scheme in
an eight-dimensional space.

We generalized our R & space to a hyperbolic octonion
space O, of achtbeins and found that the group
GL(8,9,/}>GL(4,0,)~GL(4,9,) ® GL{4,9,;) DGL(4,9,)
was the basic fiber structure. A simpler structure was then
developed for the hyperbolic quaternion space
Q. = Q, XQ, with the group structure
GL(8,C)—GL(4,9,)~GL(4,C) ® GL(4,C)—GL(4,C). This
scheme is closely related to a Grassman algebra structure of
noncommutative operators and could form the basis of an
elegant supergravity theory.
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Structural symmetry between generalized gravitational field (gravito-Heavisidian field) and the
generalized electromagnetic field associated with dyons has been demonstrated, and the field
equations, equation of motion, and the quantization condition for angular momentum operators

for both these ficlds have been unified.
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Recently, the question of existence of monopole' has
become a challenging new frontier and the object of more
interest in connection with quark confinement problem of
quantum chromodynamics. The eighth decade of this cen-
tury witnessed a rapid development of the group theory and
gauge field theory to establish the theoretical existence of
monopoles and to explain their group properties and sym-
metries. Keeping in mind ' Hooft’s solutions® and the fact
that despite the potential importance of monopoles, the for-
malism necessary to describe them has been clumsy and not
manifestly covariant, we have recently developed*® the self-
consistent quantum field theory of generalized electromag-
netic fields associated with dyons (particles carrying electric
and magnetic charges) by using two 4-potentials and assum-
ing the generalized charge, generalized 4-current, and gener-
alized 4-potential associated with dyons as complex quanti-
ties with their eal and imaginary parts as electric and
magnetic constituents. Postulating the Heavisidian mono-
pole®’ and keeping in mind the recent interest in the linear
equations for gravitational field,® the present paper demon-
strates the structural symmetry between the generalized gra-
vitational field (linear) and the generalized electromagnetic
field (associated with dyons), and unifies the field equations,
equations of motion, and the quantization conditions for an-
gular momentum operators for both these fields in a consis-
tent symmetrical manner.

Assuming the existence of magnetic monopole in order
to explain the quantization of electric chage, Dirac' general-

_

Wi ={g i

Let us also introduce the generalized charge (mass) ¢ and
generalized 4-current source density J,, such that

. {e —ig {for dyons)
7= m — ih {for gravito-dyons), (3)
. [jﬂ — ik, (generalized 4-current)
Ju = B — ik ) (generalized gravitational 4-current),

where e and g are electric and magnetic charges on a dyon; m
and £ are gravitational and Heavisidian charges (masses) on
a gravito-dyon; ji’ and k ') are gravitational and Heavisi-
dian 4-current densities given by

J'=lews)  and k"= (inpp).

351 J. Math. Phys. 25 (2), February 1984

0022-2488/84/020351-03$02.50

alized the Maxwell’s field equations into following form:

V-E =/,
V.H =k,
H

VXE= ——— —Kk,
X ot

at

(c=A=1), (1)
where j, and k, are electric and magnetic charge densities
and j and k are the corresponding current densities. On the
other hand, the linear equations for gravitational field with
Heavisidian monopoles may be written as’

V-G= —Pac>
VX = —PH>
vxG= - % ;..
ot
aG
VXH =— —jg, 2
X 9t Je (2)

where G is gravitational field, 7 is Heavisidian field, pg is
gravitational charge (mass) density, 7, is Heavisidian
charge density, j is gravitational current density, and j is
Heavisidian current density. In order to write the sets of
equations (1) and (2) in a unified form, let us introduce the
generalized field function ¥(x) such that

(for generalized electromagnetic fields)
{for generalized gravitational fields, i.e., for gravito-Heavisidian field).

Here we have assumed that the generalized electromagnetic
fields satisfying Eqgs. (1) are produced by dyons carrying the
generalized charges and the generalized gravitational fields
(i.e., gravito-Heavisidian fields); the fields satisfying Eqs. (2)
are produced by gravito-dyons carrying the generalized
masses (charges). We may now unify the generalized field
Egs. (1) and (2) into the following form:

Vi =aJ,
L
VXY= —i— —ial, 4
X E (4)
where J;, and J are temporal and spatial parts of 4-vector
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{J, } and a is a constant having the values @ = + 1 for gen-
eralized electromagnetic fields and @ = — 1 for generalized
gravito-Heavisidian fields. This equation shows that while
passing from generalized electromagnetic field to the gener-
alized gravitational field, one must replace J, by —J, in
field equations.

The Lorentz equation of motion of generalized charge ¢
in the generalized field ¥ may be written as

Mx = Re[g(b* — ivX¥)], (5)

where Re denotes the real part and the effective mass M is
given by

M=m—(a— 1)h/2. (6)

For the dyon moving in the generalized electromagnetic
field M = m and Eq. (5) reduces to

mX =e[E + vXH] + g[H - vXE], (7)
which is the usual Lorentz equation of motion for a dyon.
For the gravito-dyon (the particle carrying gravitational

charge m and Heavisidian charge 4 ) moving in the general-
ized gravitational field, we have

M=m+h
and hence Eq. (5) reduces to
(m+h)x =m[G+VvXZ]+h[H# —vXG] (8)

which is similar to the result derived recently by Singh.” We
may therefore treat Eq. (5) as the unified Lorentz equation of
motion of generalized charge (mass) in the generalized fields.
We have shown in our earlier papers** that in order to avoid
the occurrence of unphysical string variables in the solution
of generalized field equation and in the quantum field theo-
retical description of generalized fields, we have to introduce
two 4-potentials {4, ] and {B, }. Introducing the general-
ized 4-potential { ¥, } such that

V,=4, —iB,=(V,V,), (9)
the unified generalized field equations (4) may be written as
follows:

2 >V,
Ve T _gy, (10)
a2 9x,0x,
which is the unified generalized field equation in terms of the
generalized 4-potential and the generalized 4-current. When
the 4-potential { ¥, | satisfies the Lorentz condition, this
equation reduces to
av, =al,.
In other words, under the Lorentz condition we have
J,

)

—-J

I

[sincea = — 1in Egq. (6)],

{for generalized electromagnetic fields)(11a)

(for generalized gravitational fields),
(11b)

which also shows the replacement of J, by — J,, in the field
equations while switching over to generalized gravitational
fields from generalized electromagnetic fields. We have al-
ready shown in our earlier papers®® that the usual sublu-
minal electromagnetic fields when observed from a superlu-
minal frame or a superluminal electromagnetic field when
observed from a subluminal frame appear to satisfy the field
equations (11b). We may therefore conclude that the field

DV#=[
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equations for generalized electromagnetic fields when trans-
formed under complex superluminal Lorentz transforma-
tions (10) become the field equations for gravitational fields.

We find that the unified field equations (4) and the equa-
tion of motion (5) are dual-invariant under the following con-
tinuous dual transformations:

Re ¢'—Re ¥ cos  + Im sin 6,
Im¥'— — Re{sin & + Im Y cos 6,
ReJ,—ReJ, cos 6 +ImJ, sin 6,
ImJ,— —ReJ, sinf +ImJ, cos 6,

where Re and Im denote real and imaginary parts. We also
find that Eqgs. (4) and (5) possess the symmetry under simul-
taneous space and time reflections combined with rotation in
charge space,® and also under the combination of reflection
in charge space with space and time reflections separately.
Using the equation of motion (5) of generalized charge
(mass) in a generalized field, we may write the following
expression for the angular momentum vector of jth general-
ized charge (mass) moving in the generalized field of & th
generalized charge (mass), which is assumed at rest:

J =rXpllm(q;g¥)r/r, (12)

where p = M;(dr/dt ) and Im denotes the imaginary part. In
deriving this result, we have substituted

b =g1/P (13)

in Eq. (5). Equation (12) is similar to the recent result of A.
Singh.” But this angular momentum is not acceptable in the
presence of magnetic monopole (Heavisidian charge) be-
cause it is not gauge invariant. The angular momentum vec-
tor, which is both gauge invariant and rotationally symmet-
ric, may be written in the following form:

J =rx[p—Im(g;gt)V] + Imiq,q¥)r/r, (14)
where V is the spatial part of generalized 4-potential { V), }.
We may also write the following expression for the gauge-
invariant linear momentum of ith particle carrying the gen-
eralized charge (mass) g; in the field of & th generalized
charge (mass):

Il = p — Im{g;g%)V. (15)
Using Egs. (14) and (15), we get the following gauge-invar-
iant and rotationally symmetric commutation relations for
the linear momentum operator II, the position operator 7,
and the angular momentum operator J of the generalized
charges (masses)'

[ ry] = €mnptys

[iI ] = i8pm,

[1,.01,]1= —Imgqte,.,¥;, (16)

[j A1,] = zem"pn,,,

[Tdn] = i€mpd,
where tpT = — jVXV is the transverse part of ¥. From Eq.
(14) we get the scalar

(r-d)/r = Im(g; q¥), {17)

which commutes with all the observables. Equation (14) also
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shows that there is a residual angular momentum

Jres = Imig;q2)p/r
carried by generalized fields of generalized charges besides
the orbital and spin angular momentum of each particle.
Furthermore, if the generalized momentum given by Eq. (14)
is quantized along the line joining generalized charges
{(masses) g; and g, , we obtained the following quantization
condition for generalized charges (gravitational charges):

Im(g;q¥) =n, (18)
where n is an integer. It reduces to the following chirality

quantization condition for the generalized electromagnetic
fields:

(ejgk - ekgj) - 09 i 1) + 21"' ’ (19)

which is identical to the result of Zwanziger'' and to that
derived in our earlier paper* by different approach. For the
generalized gravitational field (i.e., gravito-Heavisidian
field), Eq. (18) reduces to

mjhk _ mkhj = O, i’ 1’ _+__ 2)"' ] (20)

where m; and h; are gravitational and Heavisidian charges
(masses) on jth gravito-dyon.
It has been shown in our earlier papers'? that the condi-
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tion (19) leads to a very large force between two opposite
magnetic charges as compared to that between negative and
positive unit charges. It could explain, to some extent at
least, the negative results of the experimental search for
monopole. In a similar manner, Eq. (20} leads to the enor-
mous forces between Heavisidian charges and suggests that
Heavisidian monopoles are the most strongly interacting
form of matter.

'P. A. M. Dirac, Proc. R. Soc. London A 133, 60(1931); Phys. Rev. 74, 817
(1948).

2J. Schwinger, Science 165, 757 (1969).

3G. t'Hooft, Nucl. Phys. B 79, 276 (1974); B 138, 1 (1978).

“B. S. Rajput and D. C. Joshi, Hadronic J. 4, 1805 (1981); Pramana 13, 637
{1979).

°B. S. Rajput and Om Prakash, Indian J. Phys. A 53, 274 (1979); Indian J.
Pure Appl. Phys. 16, 593 (1978).

D. D. Cantani, Nuovo Cimento B 60, 67 (1980).

"A. Singh, Lett. Nuovo Cimento 32, 1, 232 (1981).

®B. S. Rajput and O. P. S. Negi, Lett. Nuovo Cimento 32, 117 (1981).

°0.P.S. Negi, H. C. Chandola, K. D. Purohit, and B. S. Rajput, Phys. Lett.
B 105, 281 (1981).

'°E. Recami and R. Mignani, Nuovo Cimento 4, 209 (1974) and references
therein.

"'D. Zwanziger, Phys. Rev. 176, 1489 (1968); Phys. Rev. D 3, 880 (1971).

'2B. S. Rajput and Om Prakash, Indian J. Phys. 50, 929 (1976).

B. S. Rajput 353



Stochastic processes driven by dichotomous Markov noise: Some exact

dynamical results
J. M. Sancho

Departamento de Fisica Teorica, Facultad de Fisica, Diagonal, 647, Barcelona-28, Spain

(Received 29 September 1982; accepted for publication 13 January 1983)

Stochastic processes defined by a general Langevin equation of motion where the noise is the non-
Gaussian dichotomous Markov noise are studied. A non-Fokker~Planck master differential
equation is deduced for the probability density of these processes. Two different models are
exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is
observed for a critical value of its correlation time. Critical slowing down does not appear in this

point but in another one.

PACS numbers: 05.40. + j, 02.50. + s, 02.30.Jr

1. INTRODUCTION

Stochastic differential equations have an important and
successful role in the theory of nonequilibrium phenomena.
Most of them them are Langevin type, which are first-order
differential equations with stochastic terms. In some cases
the stochastic forces enter additively and often it is assumed
that they represent internal fluctuations. In other cases the
noise enters externally by means of a parameter of the pheno-
menological equation of motion which fluctuates. This kind
of external noise has received a great deal of attention be-
cause it can represent a fluctuating external environment or
a controlled noise generated in the laboratory by specific
devices and introduced in the system in order to study its
influence. This external noise is independent of the system
and it is characterized by its intensity and correlation time.
Examples of the influence of external noise can be found in a
variety of systems, such as electric circuits' or liquid crys-
tals,” among others.

The mathematical study of these equations begins with
the modeling of the noise. The simplest assumption is to take
a Gaussian white noise which has zero correlation time. In
this case, the process is Markovian and a Fokker-Planck
equation for the probability density always exists.” Never-
theless, this noise cannot always substitute for a real noise,
which has a finite (perhaps small, but not zero) correlation
time. In this case, the hypothesis of white noise, although
suitable for a general description of the process, does not
explore all the possibilities of a real noise. If we want to take
into account the color of the noise, we should choose a math-
ematically tractable colored noise. Although many possible
noises exist* only two of them have been receiving enough
consideration in the literature.

The first one is the Ornstein—Uhlenbeck process, which
is Gaussian and obeys the same equation of motion as the
velocity of a free Brownian particle. Stochastic processes
driven by this noise have been studied in Refs. 5-8 and inter-
esting features have been found which do not appear in the
white noise assumption.

The second noise is the two-step Markov process or
dichotomous noise.”'? This noise is not Gaussian but Mar-
kovian and its influence in the stochastic process has been
studied in Refs. 10-12. Interesting results, some of them
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quite similar to the former case, have been obtained, but only
for the stationary state. A few dynamical properties are
known in this case.'? This paper will be mainly devoted to
the study of the dynamics of two stochastic processes which
allow an exact analysis. These are linear models except for a
change of variables, but they are not trivial. Moreover they
present mainly the second example—characteristics belong-
ing to the nonlinear cases, such as the possibility of having a
nonequilibrium bimodal distribution.

The study is carried out by means of the evaluation of
the first two moments of the stochastic variable and the solu-
tion of the differential equation that obeys the probability
density.

Section 2 is devoted to the problem of finding the differ-
ential equation satisfied by the probability of the stochastic
process. A short summary of the mathematical tools is pre-
sented and a differential equation of the non-Fokker—Planck
type is obtained for the probability density. This new result is
particularized to exact cases, whose probability density
obeys a second-order partial differential equation of the hy-
perbolic type.

In Sec. 3 we study two exact examples: the first one is a
pure diffusive model and the second one is a linear case with
linear drift and additive noise. This last case is the most rel-
evant and it will show interesting nonequilibrium character-
istics. In Sec. 4 we summarize the main results of this paper.

2. GENERAL THEORY

A. Differential equation for P(qg,{)

Here we summarize some known results. One can as-
sume quite generally'®!" the following equation of motion
for the variable ¢:

g=flg) +8lgik(t) (2.1)

where £ (1) is a stochastic force that we identify with the di-
chotomous noise or two-step Markov process.'* This noise
will only have two possible values + A with equal probabil-
ity and jumps with probability LA d¢ for dt.” It has zero mean
and autocorrelation

() (e) =Aexpf{ — At —1']}. (2.2)
By means of the “formula of differentiation” of Shapiro
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and Loginov,'*

J
2 s lemn
d
=—A<§(t)¢[§(r)1>+<§(z)a—t¢[§<tn>, 2.3)

whered [£ (¢ )]isafunctional of £ (f Jand theaverageisoverthe
distribution of £ (¢ ), we can obtain a closed set of equations for
the probability density P (g,¢ ).'""'* The method we are follow-
ing'" is an alternative to that employed by Kitahara et al.'’
We begin with the stochastic Liouville equation' for the
density p(g,t ) of a set of realizations of (2.1},

plat) = — j—q (Flg) + 2()E (t Nolg,t). 2.4)

Taking the average over £ (¢) and using Van Kampen’s
lemma’®

Plgt)= (P(q’t)>, (25)
we arrive at

Plgt)= — aiqfw 1) — %g(qwq,r h (26

where

Pylg.t) = (£ (t)olgst))- (2.7)
Since plg,t ) is a functional of £ (¢ ), we will use the formula of
differentiation (2.3) to obtain an equation of motion for

Pi(g.t):

Pgit) = —AP,gt) — aiqf(q)P,(q,r )

- aig(qm 2P (g.t), (2.8)
q

where we have used the fact that the square of the dichoto-
mous noise is a constant £%(¢) =4 2.

The set of equations (2.6 and {2.8) form a closed system
of linear partial differential equations whose solution will
give us P(g,t ), provided that we know the initial condition
P(g,0). We also need another initial condition because we
have two linear equations. The second one is obtained as-
suming statistical independence between £ (¢) and p(g,¢ ) in
t=0"

Ethplg:t) | o =Pig0 =0, (2.9)
which implies in (2.6)

dPlg,t) 4 _

Y % fl@Pig.t) . 0,
which together with

Z) ; t=0 = olg)
will be the initial conditions of the system (2.6), (2.8).
A closed equation for P (g,t ) cannot easily be obtained.
Nevertheless, a formal expression can be given'' in the fol-
lowing way.
Let us formally integrate the linear equation (2.8):

)= —a[ep] ~ (14 S ra)e—o]

ai glaP (gt '}= — A B g.t),
q

(2.10)

(2.11)

(2.12)
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where we have used (2.9). Substitutingitin (2.6) we arriveata
formal differential equation for P(g,z)'":

Plgt)= - aiqf(qu )+ 47 gl—g(qw @), 2.13)

The main object of this paper will be the exact solution, for
two particular cases, of this integrodifferential equation.

Although the time-dependent solution is not always
known, the stationary solution is well known and it reads, in
the case that it exists,'*!!

Pl =N
Xexp[ fA dqf(q) }], (2.14)
If in (2.13) we take
expl — A |t — 1"} ~=(2/4)(t — 1), (2.15)

we arrive at the white noise limit for £ (¢ ). This limit holds for
A—0,4— 0,and 4 2/A finite and it give us an insight about
a possible perturbation procedure, taking A as a large param-
eter.

B. Expansionin 1/4

Let us review a perturbative approach to {2.13) consid-
ering A large. The limit A— o is a very crude approximation
because we lose all the specific characteristics of the dichoto-
mous noise. Let us see how to retain the properties of § (¢ ) by
means of an expansion in 1/A4.

We take a time derivative in (2.13)

Plgt)= — aif(q)P @)+ 422 g0) 2 ggPlar)
q dg dq
2 9 REEN
— 47 gla (1 e f(q))B @) (216
If we use now the approximation (2.15) in B {(g,t ), we obtain
Plgt)= — if(q)P (gt)+4° ig(q) f—g(q)P (@)
ad
2 — — .
4 g(q)( 1+ /1 = f(q)) SeaP e
(2.17)

which is valid to first order in 1/4.

So we have reduced (2.13) to a second-order partial dif-
ferential equation. The procedure is extended to the desired
order in 1/4, deriving (2.16) succesively.

At this moment, a question arises: does a process exist
which obeys an equation exactly similar to (2.17)? The an-
swer is affirmative and we are going to study it in the next
subsection.

C. Exact cases
In (2.16) we can use (2.13) to substitute for the term
+474(3g(q)/39)B (g, ),

A* aig(q)B @f)=Plgt) + 2 flgPlgs).  (2.18)
g dgq

The other term — A *(dg(q)/q)(df (q)/Iq)B (g,t ) needs
a careful analysis. By means of the commutation of the g-
derivatives, this term is expressed as (Note: from now on an
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upper point means a partial time-derivative and a comma
means a g-derivative):

9
dq

— _42 % (gla)"(q) — g'aV @) B lgrt)

—42 % g aiqf(q)B 1)

SEINT]
~ 4% fl) 5B o), (2.19)

where the last term can be written in terms of P (¢, )by means

of (2.13) so that

, 0 d
-4 gf(g)g{g(q)l?(q,t)

— _ 9 rapigr) -2 rig 2
=~ 5 faPlet) — 5 Sla) 5 f@IPlgr). (220

Joining all these partial results, the general equation (2.16)
can be written in the following form:

Plgt)= —AP(gt)—2 %f(q)i’ @)

42 fgPig)
dq

SRS
+4 9 glq) % 8lq)P(g:t)

3 3
- Eq_f (@) Ef (q)P(g,t)

_ :% (gla)f'la) — g @HA B g.t). (2.21)

As far as solvability is concerned, this formal equation is
equivalent to (2.16). In order to advance in this way, we need
to eliminate B (g, ) in the last term in (2.21). This can be done
in the case that

glg)f'(g) — &'lq)f (9) = &°g)f(g)/glg) = Cglg),  (2.22)

where Cis a constant. If this condition holds, the last term in
(2.21)is — 3(Cglg)B (¢,t ))/3q and by means of (2.13), it is
transformed into

a
- Ca—g(q)A ’Blg,t)
q

= —CPlgt) - CZ figPig), 2.23)
dq
and hence {2.21):

Plgt)= —(A+C)P(gt) — 2aiq(q)P(q,t)

— i+ aif(q)P (1)

q
20 0
+4 % glg) % gq)P(g.t)
(2.24)

a d

which is a second-order partial differential equation for the
probability density of the process (2.1). This equation is one
of the main results of this paper and it has a time-dependent
exact solution with the initial conditions (2.10) and (2.11).
For this reason, those processes (2.1) obeying (2.22) will be
called exactly solvable models and not surprisingly the con-
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dition (2.22) is the same one that was discussed by Hinggi'®
and San Miguel'” in the context of the white noise hypothesis
for the stochastic force & (¢) in (2.1) and by Sancho and San
Miguel® in the case of a Gaussian but a nonwhite assumption
for £{t).

In all these cases, the equation for the probability den-
sity was of first order in time (Fokker—Planck equation) with
a linear drift and a constant diffusion whose solution is wel}
known. In our case, there are higher time derivatives and the
exact solution is, as of now, unknown. The exact solution of
(2.24) will be another important result of this paper.

Before starting with the process of solving (2.24), we
will write it in the standard form of second-order partial
differential equations. This is done by commuting the g-de-
rivatives

a 2 2 2
[E;Jr(f(q)—d 50D o=

I L htrc+2uiad
510q 5

+ (4 + C)flg) — 34 8la)e’lq) + Flalfla) }%
+ ((Flq)f (@) — A *(glg)g'(q))
L+ Cria|Pan

In order to classify this partial differential equation, we
need to evaluate the discriminant, which is

(4°¢%q)'"* = Aglg)>0 (2.26)
because g{g) should always be positive. Equation(2.25) is
classified as an hyperbolic second-order partial differential

equation for whose solution we are going to follow the cur-
rent studies on this mathematical topic.

3. EXAMPLES

If our process (2.1) obeys the necessary and sufficient
condition {2.22) to be exactly solvable, we define a new vari-
able Q (q(t ))’5,16.17

+2f(q)

(2.25)

_(4e 3.1
0l f g(q) (
and we have

O=flg)/glg) +£(t)=CQ+A+E(r), (3.2)

where we have used (2.22) in the integrated form and 4 is an
irrelevant integration constant. We can assume 4 equal to
zero. Our problem has been reduced to a linear one with
additive noise. This is well known>'®"" in the context of solu-
ble cases.

Equation (3.2) with 4 = O presents two possible and dif-
ferent versions: C equal to zero or not. These two cases will
be called the pure diffusive case and the linear case, respec-
tively.

A. Pure diffusive case

This case corresponds to the equation of motion (2.1)
with f{g) = 0. The representative model can be written, after
performing the changes (3.1) and relabeling the variable as

gle)=£1(). (3-3)
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Some exact results can be obtained without solving the cor-
responding equation of motion for P (g,t ). For example, the
statistical averages are obtained as follows: The solution of
(3.3)is

ale) =0+ [ £1edr, (3.4
o
and hence the first two moments of the variable ¢ are
(g(t)) = {(q(0)),c =0,

(D) = (@O e = f £ oM | £

- 232 (t— ( “;_M) ) (3.5b)

They are expressed in terms of the initial averages and we
have used the statistical properties of & (¢} in (2.2). These re-
sults coincide with the well-known ones for the position of a
free Brownian particle. We can obtain more interesting in-
formation about the system obeying (3.3). The knowledge of
the time-dependent probability density P (g,f ) showsinterest-
ing behavior very different from that in the white noise limit.

From the general expression (2.25), particularized to
the model (3.3), f(g) = 0, glg) = 1, we obtain the equation of
motion for P(g,t):

(3.5a)

P pgn)-a>Z pgri+alpgn=0 (36
ar? oF* ot

The initial conditions {2.10) and (2.11) become in this case

Plg,t)],—o = blg) (3.7)
9Plgt) =0. (3.8)
6t t=0

A similar equation to (3.6) with the initial conditions (3.7)
and (3.8) appeared in the context of the generalized Smolu-
chowski diffusion equations'®'? and the present example
was solved by Hemmer.?® Therefore, we will not reproduce
the details. The probability density is

P(gt)=le *7?[8(At — g) + 8(At + g)]
i R 211/2
+2AI°(4A(A’ 7) )

A (A 12
2442 — )2 ‘( 24 @t =g )
(3.9)

where I,,1, are the Bessel functions of the imaginary argu-
ments of orders 0,1, respectively.

From (3.9) one can see that P(g,? ) is almost a flat distri-
bution bounded by two delta functions movingtog = + o
with a velocity + 4, respectively. This shape is very differ-
ent from that corresponding to the white noise case,?’ which
presents a Gaussian distribution spreading out in time,

B. Linear case

In this case, Eq. (2.1) takes the general form (3.2), and
after relabeling the variables, it is expressed as

9= —yq+&(t). (3.10)

As in the former case, some interesting results can be ob-
tained using the formal solution of (3.10). This is
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q(t)=q(O)e‘7‘+fe“”‘“"’g(t’)dt’, (3.11)
0
so the mean value is

(q(t)) = (q(0))rce™ ™, (3.12)

which goes to zero for t— w0
An interesting dynamical quantity is the correlation
function

(glt)glt")). (3.13)
Using the solution (3.11}, the statistical properties of £ {f) in
(2.2), and assuming statistical independence between the ini-
tial conditions and £ (¢ ), with g(0) = 0, the quantity (3.13) is

_— 2 1 1 —HAr+1t')
alal ) = = ( )e
Az ~—yt—/11‘__ AZ
P4z e

( AZ Az )e~ﬂ1~l’)

A +yyr V-4’
(3.14)

e—yt‘—&t

A 2 —A(t—1t'}
+ Ry e s
and in the stationary state (f, # '~ oo ) but t — ¢ finite,

N Ad?
(qlt)glt Dy = 7/(7’2 lz)e

— At —1t )
T
The equal-time correlation function in the stationary state is

(g =4°/YA +7). (3.16)

From the exact solution (3.15), we can obtain the linear re-
laxation time and see if critical slowing down exists at any

point:
f (qlt)glt + "), Sl + 2% Aty
RN Ay

We can see that only in the cases y—0 or A—0, the linear
relaxation time diverges. In both cases, the formal stationary
probability density is not normalizable, as we will see. The
first case (y—0) is a trivial one because the dissipative drift
disappears and the problem reduces to the case 3A. The sec-
ond case (A—0) is new and more interesting because even
with nonzero dissipative drift, the “‘color’” A and not the
intensity A of the noise £ (¢ ) precludes the existence of a sta-
tionary state. This corresponds to having a noise with infi-
nite correlation time, and hence in the opposite limit of white
noise.

The stationary distribution can be obtained from (2.14):

Py(g) =N -y ), (3.18)
defined between the boundariesg = + 4 /¥. The normaliza-
tion constant is

N= I'4+472y)

AT WA /2y)
One can see that the correlation function in the stationary

state evaluated with (3.18) and (3.19) agrees with (3.16).
The study of (3.18) manifests two different shapes for

e (3.15)

(3.17)

(3.19)

P, (g), which we relate to a nonequilibrium phase transition.
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The critical value of the parameters is A = 2y. In the case
A > 2y, P, (g) has amaximum in ¢ = 0 and goes to zero in the
boundaries. For A <2y, P, (¢) has a minimum in ¢ = 0 and
goes to infinity at the boundaries. This gives rise to a bimodal
distribution when we change the “color” of the noise A from
A > 2y to A <2y. Then we have found a nonequilibrium
phase transition induced only by the “color” of the noise.
The transition takes place at the value A = 2y. We have seen
in (3.17) that no critical slowing down appears in this point
but in A—0. This is a very interesting example of Suzuki’s
theory,® which states that in nonequilibrium phase transi-
tions, the phenomena of critical slowing down and the ap-
pearance of new maxima in P, (g) are separate processes
which can take place for different values of the parameters.

We should mention that in the case A— o0, we recover
the white noise P, (g) corresponding to this problem. Let us
now return to the problem of finding the solution of P(q,r),
which in this case is not known. As the details of the math-
ematical process are very cumbersome, we will state only the
main steps and references used in the evaluation.

In the model (3.10), where f(g) = — vq, glg) = 1, the
equation of motion (2.25) for the probability density is

82

& R &
—+ V¢ —-4%)—=—2rg
ot q
3
~By—=A)—-—7vA -4
at

x I _ YA — 27/)]P(q,t) =0 (3.20)
dq

with the corresponding initial conditions (2.10) and (2.11):

Plgt)|,_c = 6lg), (3.21)

d d )

2 gL y\Pige =0. 3.22)
(8[ 79 Py 7 |Plg.t) L (
The standard approach in the solution of (3.20)?' begins

J

Pigit)=1tye® "{S(A(l —e ") +yg) +8(yg—dlg—e "D},
Polgt) =1 = 2a)24 "~ (A1 + e~ "} — y’¢*) " °F(a,a,1;0),

with its reduction to the canonical form. This is done by
means of a change of variables

§=e"(yg—4a),

n=e'lyg+4), (3.24)

where the new variables &,7 are called the characteristics.
The partial differential equation for P(£,7) takes the hyper-
bolic form

(3.23)

cp O
m—¢) prem an §)3§

+afy — s“)?f— — 2Py =0, (3.25)
n
where
a=1-1/2. (3.26)

The equation (3.25) has been studied by Koshlyakov et al.”’
in several cases. We follow their approach. The next step is to
transform (3.25) into the Euler-Darbouse equation by the
change

P =n—£YQEm). (3.27)
Q (£,n) obeys the partial differential equation
F? a J a J
_—— 1) =0 (3.28
iy e el A
with
B = 2a. (3.29)

The solution of the Cauchy problem associated with
(3.28) with the corresponding boundary conditions given by
{3.21) and (3.22), following the Rieman method, is indicated
in Ref. 21. This gives, after transforming variables,

Plgt)= Pl(q’t) + P:’(q’t) + Py(g,2),

where

(3.30)

(3.31)
(3.32)

Pgt)= — Ay tle"(yg—A(l+e ") A H1 + e ") — ¥’¢’) Flaal0)
+hRAPe e AN 1+ e ) — Vg FlaaLiol(y's — A1 e )

X{rg+4(1—e "yg+a(1+e ") ' +lrg—A(l—e ")yg—A(1+e ")},

o= 1= TP — PPN +e TV — 1),
lgl<a /91 + e 7).

F(a,a,l;0) and F'la,a,1;0) are the hypergeometric function
and its derivative with respect to o.

P (g, ) gives the behavior of P (g, } in the initial regime as
one can see taking the limit #—0. P,(q,? ) dominates in the
limit #— o0, giving the stationary solution P,, (g), which coin-
cides with (3.18) and (3.19). Ps(q,t ) refers to the intermediate
regime.

Although the solution(3.30}—(3.35) has its own impor-
tance because of its existence, only a few results can be ob-
tained from it because of its extraordinary complexity. This
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(3.33)
(3.34)
(3.35)

shows that the non-Gaussianity of the process (3.10) mani-

fests itself by the complexity of the solution, even in the case
that we have a linear problem. As in the former case, we have
that P (g, ) is bounded by two delta functions moving to the
stationary boundaries + 4 /¥, and following a deterministic
equation given by

qff = —q i”A or qi :f(qi)ig(qi)A’
(3.36)
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where g | is the peak position of the delta functions. This is
easily understood if we think that the stochastic dichoto-
mous process has only two possible values + A. Thisis a
characteristic of this kind of stochastic process modeled by
this special noise, which has also been found in nonlinear
equations by means of numerical simulation, and whose re-
sults will be presented elsewhere.

4. CONCLUSIONS

We have explored the possibility of obtaining dynami-
cal properties for a Langevin-like equation of motion with
dichotomous Markov noise. We have presented a general
method to obtain the differential equation obeyed by the
probability density of the process. This differential equation
involves higher time derivatives and hence it is not of the
Fokker—Planck type. The main point in this deduction is to
consider the correlation time of the noise as an expansion
parameter. In two particular cases, we have been able to
write an exact differential equation which is a second-order
partial differential equation of the hyperbolic type. In these
two cases, we have found the exact solution of P (g, ). In the
second case, which has a nontrivial stationary state, we have
studied the possibility of the appearance of critical slowing
down by means of the explicit evaluation of the correlation
time. Although the stationary analysis gives the existence of
a phase transition for some value of the noise parameters, no
critical slowing down appears in this point but in another
one. This is an example of Suzuki’s criteria of the appearance
of slowing down in nonequilibrium stochastic processes.
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A formalism is presented to solve the Dirac equation in curved space-time and the spinorial
solution is obtained. A general method is introduced to compute the particle creation. The kernel
§(x,x’) leading to the particle model is built out of considerations on the Minkowskian limit and

high energy behavior.
PACS numbers: 11.10.Qr, 04.90. 4+ ¢

I. INTRODUCTION

The introduction of a particle language in a curved
space—time semiclassical quantum field theory could help to
solve important problems and to get interesting cosmologi-
cal consequences, as was already discussed in a previous pa-
per.' The so-called quantum equivalence principle (QEP)?
was applied there to quantize a scalar field in the presence of
a classical gravitational field; a scalar particle model was
explicitly obtained, and a finite number of particles created
during the expansion of the universe was computed. A Rob-
ertson—Walker spatially flat metric was considered, and the
calculations were performed up to second order in a power
series development of the Hubble coefficient (H ).

The same principle (QEP) was extended to the Dirac
case by one of us (Castagnino?), and it was again proved to be
implementable when developed up to first order in H. In
fact, an analogy can be made between the ambiguity in the
determination of the biscalar kernel G {”(x,x’) of the general-
ized Klein—-Gordon operator and the one of the bispinorial
distribution S (x,x’), which “contains” the spin-} particle-
antiparticle model as was shown in Ref. 3. The properties
that are naturally expected to be satisfied by S, (x,x’) (general-
ization of the flat space—time ones) are not enough to univo-
cally determine it. However, if the QEP is used as the selec-
tive criterion, it leads to inconsistencies when higher orders
of H are taken into account. Therefore, another additional
condition has to be used as was already pointed out in Ref. 4,
where the scalar case was considered. The selecting criterion
introduced there is based on the argument that the high ener-
gy behavior of a field theory, which is governed by the singu-
lar structure of the kernels, should resemble the flat space-
time one. In fact, the identification between flat and curved
space—time kernels over all a Cauchy surface (as was as-
sumed by the QEP) could be an excessively strong require-
ment. The additional condition introduced in Ref. 4 comple-
tely defines a scalar particle—antiparticle model when it is
developed in a spatially flat expanding universe in a power
series of the metric and its derivatives up to second order.

We now show that the method can be extended to the
Dirac case and that the kernel S,(x,x’) we obtain is the most
natural generalization of the flat space-time one.
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In Sec. I A a general formalism is presented to solve
the Dirac equation in curved space—time, and the spinorial
solution is given.

A general method to compute the particle production
between two states of the universe (i.e., between two different
times ¢, and ¢,) is displayed in Sec. II B.

The kernel S,(x,x’) built in Sec. III leads to no particle
creation. However, it could contain terms that cannot be
“caught” by a series development (such as those having the
form e ~ %, when the expansion is made in powers of k ~') but
which also satisfy the minimal hypothesis needed to inte-
grate a good projector, and which could give rise to a non-
zero number of created particles.

{l. SPINORIAL PARTICLE MODEL
A. Dirac equation solutions in curved space-time

A spinor field in curved space-time should satisfy the
generalization of Dirac equation, namely:

[Vx)V; + m]¥(x) =0, (1)

where i = 0,1,2,3, 7/(x) are the generalized Dirac matrices
verifying the anticommutation rule

iyt = -2 )
(I = identity 4 X 4 matrix), V, = d; 4+ o, denotes the covar-
iant ( — ) (contravariant ( + )) spinor derivative, being the
spinorial connection partially defined by V7, = 0, and m is
the mass of the field. For more details see Refs. 3 and 5.

In a spatially flat Robertson-Walker universe charac-
terized by the following space—time interval,

ds’ =dt? — a(t 5,5 dx*dx’, 3)
Eq. (1) takes the form
(f8i+%H’)/)—m)W(x)=0. 4)

The spinorial affine connection and Dirac matrices are expli-
citly listed in the Appendix.

Equation (4) can be solved by separation of variables.
The following spinor can be given as a general solution:

W, () = [1/Q2maf/ 2]y (t)e =", (5)
If (5) is replaced in (4) and the commutation rules (2) are used,
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Eq. (4) reduces to

(3o + Ytk ¥™ + m)]®, =0. (6)

Now the spinor @, could a priori be any function of
time satisfying (6). However, it is well known that every solu-
tion of the Dirac equation is also a solution of the Klein—
Gordon equation with a d’ Alembert operator defined by
A" = — Y,V + IR, where R =g"R; =g’R",,. Due to
the particular representation of the Dirac matrices we have
chosen when 4 “? is applied to @, , two independent differ-
ential equations arise: One should be satisfied by the first two
components of @, and the other by the remaining two. Then
we suggest

i L2 dt
A€

ifQ2,dt

Ay et

¢k = : s (7)
ASket_fAkdt

ifAdt
A e

where 4,,,..., A4, are coefficients depending only on the mo-
mentum k and £2, and A, are arbitrary complex functions of
time depending on the momentum modulus. It can also be
pointed out that the coefficients 4, ,..., A4, are those appear-
ing in the spinorial solution of the flat space~time Dirac
equation.

Replacing (7) in (6), we obtain a homogeneous system
which has a nontrivial solution if

(2, +m) (A, —m) =k?/d’. (8)

When this condition is satisfied, two independent spinors @,
are obtained. However, as a complete base of solutions of the
Dirac equation must consist of four spinors, two more spin-
ors have to be found. In fact, note that the determinant (8) is
not modified under the following change:

Q—>—A%, A——0F (9)

Therefore, when this change is introduced in (7) and the re-
sultant expression is replaced in (6), the other two spinors are
obtained.

The base can then be written as

g _ ( 2%+ m )1/2
y 0F 1A,

7
X k,o"
a(2¥+m)

— ifAdt

(217.0)3/2

Q

— ke
»

(10)

W(3),(4i_( N¥+m )1/2
oo f 2K T

¥+ A,
— k"‘aa ei;i.kdt

Xl a(2¥+m) | ———=e %7,
( "I ) | amap”

where A, = Re(A,).
These spinors have been normalized according to the
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following internal product (see Ref. 3):
WP = —i [ PPy dot = 8K — ), (11)
z

where ¥, means Diracadjoint (¥, = ¥ B;8= — iy,). Itis
clearly seen that the integral (11) does not depend on the
surface J, where it is performed.

However, spinors (10) represent a formal solution. They
will not be a solution of the Dirac equation unless £2, and A,
satisfy the following differential equations obtained replac-
ing the spinors @, in (6):

i, — 2% +iH(Q, +m)+ ol =0, (12)

Ay, —A2 +iH(A, —m)+ o} =0, (13)
being

oy =k*/ad* +m (14)

It can easily be seen that Eqgs. (12)—(13) admit a simple
solution when the massless case is considered. In fact, it is

2,=+k/a, A= +k/a. (15)

However, there is in general no simple solution for massive
particles. Nevertheless, it is possible to develop a solution of
(12)—{13) in a power series of the Hubble coefficient H (see the
Appendix).

There are therefore two positive and two negative fre-
quency solutions which will be identified with particles and
antiparticles with positive or negative helicity when the cor-
responding kernels were found. Indeed a base @

(@ = 1,2,3,4) there also exists in flat space—time where these
four functions have a precise physical meaning: Two of them
are the particle model with positive or negative helicity, and
the other two constitute the antiparticle model with positive
or negative helicity. Instead we have a set of completely equi-
valent base spinors { @ ?}, and we do not have a criterion to
decide, within that base, which vectors correspond to parti-
cles and which to antiparticles. In fact, the particle-antipar-
ticle model is associated with the bispinorial kernels S (x,x’)
and S (x,x’} (generalizations of their flat space-time analogs).
While the kernel S (x,x') is well defined in an expanding uni-
verse and in general in any curved space—time, the kernel
S,(x,x’) is not. It was in fact shown in Ref. 3 that S,(x,x’) is
not invariant under a change of the base of Dirac equation
solutions. The fact that a different kernel .S,(x,x’) and thus a
different particle-antiparticle model could be selected over
different Cauchy surfaces can be interpreted as a pheno-
menon of particle creation. We therefore introduce in the
next paragraph a formalism to compute the number of parti-
cles created during the expansion of the universe.

B. Particle creation

It will be useful to define a matrix F, the columns of
which are the spinors ¥\ without the factor e ~ **/(27a)*/?,
which is not necessary to evaluate the creation of particles. It
can be seen that F is unitary, i.e.,

F '=F}. (16)

Any base defining the particle-antiparticle model over
a Cauchy surface I (1) = {x/f (x) = 7} can be expressed as a
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linear combination of the spinors ¥ as

Pt)=F(t)4], (17)
where 4, is a 4 X4 matrix. These P{"(¢), the columns of
which will be denoted by I7 {7*“(¢ ), would be fixed with a, by
now unknown, physical principle providing the Cauchy data
IT{7"Y7) (e.g., in Ref. 3 the QEP was used).

The coefficients A {7 can be obtained as a function of the
initial conditions P{7(r) on the Cauchy surface using Eq. (16)

A =FL(n)P(n). (18)

The particle-antiparticle models at two different times
7, and 7, can also be related by a linear transformation (Bo-
goliubov transformation)

Pt) = Pt ) (1), (19)

a, being the 4 X 4 matrix of the transformation, namely
from (19) and, using (16) and (18),

& (11,72) = PN )F (T )F Lm0 PE(T) (20)

as a function of the Cauchy data P{"(7,) and P{"(r,).
The matrix a, has two very important properties:
(i) It is unitary

al =a, (21)

because it transforms the orthonormal base P in another
base P{*!, which is also orthonormal. This property is direct-
ly obtained from (20).

(ii) If the Dirac equation (6) is charge conjugated and
some properties of Dirac matrices 7, are taken into account,
it can be easily seen that y,@ * | is a solution of the Dirac
equation if @, also is a solution. The charge conjugation
operator C can then be defined as C = ¥, plus complex con-
jugation and k— — k, and after some calculation the follow-
ing can be obtained:

CF,C=F*,
CP{'C=P'"x,

(22)
CAVC =A%,

Ca,C=a* .
On the other hand multiplying by e ~ **/(27a)*/? the first of
Eq. (22) and using spinors (10), it can be seen that
CyV=pix  CPP=ypox. (23)

Moreover, for any column of the matrices P, .4, , and o, an
analogous relation holds. If it is developed for a, , some rela-
tions are found between its elements which reduce the num-
ber of independent elements, namely

(@) = @2 e (@ = —(@* )
(@) = — @ty (@) =(@* ()

(24)
(@) = — (@ )z (@) = (@™ )33,

(@ ={a* v (@2 = — (@ )

Now, the Dirac field must be quantized in order to com-
pute the number of particles created between 7, and 7,. As
was already discussed, P|" and P{"*' are the bases which will
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represent the particle and antiparticle models at 7, and 7.
The field can then be expressed in terms of any of these bases
with the corresponding creation and annihilation operators
over each Cauchy surface, i.e.,

W e) = I )@l !), + T e (@),
+ 0@, )5 + 1T a )
(25)
Vile) = I ), + 1T e,
IR, + T )
where again the common factor e = **/(27a)*/? has been
omitted and (a, ), , are the particle creation operators and
{ay )4 are the antiparticle annihilation operators. To sim-

plify the notation, the following column vector operator is
introduced:

(@),
(a‘{’)z
(@ )§

(a(:’ Kk )I

(26)

a”’ =

Then Eq. (25) can be written in the following simpler form:

W lt) = Pt )ay”,
W (t) = Pt )ai. (27)

But as P and P are related by a Bogoliubov trans-
formation replacing one base as a function of the other in
(27), a, transforms according to the following law:

& = af(r,m)af". (28)

Everything is now ready to compute the number of par-
ticles and antiparticles created by an expanding universe as it
goes from 7, to 7,. If the state of the universe at r, is taken as
the vacuum state, then

(OIN'Z10) = ,(O(al™) (@), ]0),
= [l sl + llas)as I,
{OIN 210 = [ )azl? + la sl (29)
{O[V510) = Hae)aal® + (@ )sal?,
OV )40) 1 = Haar|* + lla)a [,

where relations (24) have been used for the last two. It must
be noticed that the creation of particles arises from the non-
diagonal terms of a,, i.e., the elements mixing the particle
and antiparticle terms.

The formalism we have introduced is a generalization
of that applied in Ref. 3 to compute the particle production
when only the first order of H was considered. However, as
the QEP is not implementable when the second order of H is
taken into account, another criterion has to be given to select
the particle-antiparticle base. We present, in the next sec-
tion, an alternative method leading to the adiabatic particle
model.
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Hi. MINIMAL HYPOTHESES AND CONSTRUCTION OF
THE MODEL

A. Minimal hypotheses

It is now necessary to explicitly find the base P} giving
rise to the particle—antiparticle model. As was seen in Ref. 3
this base is associated with the bispinorial kernel S,(x,x’). So
we now introduce a criterion to select one of the possible
candidates to play that role.

We shall work in a generic globally hyperbolic manifold
at the beginning of this section, though the formalism will be
developed for a Robertson-Walker spatially flat expanding
universe (3).

The generalization of the biscalar kernel G %{x,x’) of the
operator (4 © — m? — £R ) to the spinorial case was done by
Lichnerowicz,® who introduced the bispinorial distribution
contravariant in x and covariant in x’, G /?*,.(x,x'), i.e., the
elemental kernel of the operator (4 "? — m?).

The following notation has been used: 4 ¥ = — g%v'®
d,, where V¥ denotes the ordinary convariant derivative of
tensors; £ defines the kind of coupling to the gravitational
field (£ = O minimal or £ = 1/6 conformal); and
a,b’ = 1,2,3,4 are spinorial indices, which will be omitted
from now on as it will be understood that the bispinors con-
sidered are contravariant in x and covariant in x’.

Operating on the bispinorial kernel G /%9, .(x,x') with
the generalization of the flat space—time Dirac operator a
new kernel is introduced, namely,

Sxx') = (¥'V, + m)G " (x,x), (30)

which can also be expanded in terms of an orthonormal base
of Dirac equation solutions { y{**} as

Sex') =iy i), (31)
s,h
where
1
(s,h) — ”1r)(s.h )e — ikr 32
Xx _(277'&1)3/2 k (32)

(see Ref. 3), and we have now changed the four-valued in-
dices (a) for a pair of two-valued indices (s,/ ) where
s= +(—), A= + (—)correspond to particles (antiparti-
cles) with positive (negative) helicity. S (x,x’) has all the prop-
erties to be considered the anticommutator of the field
[(@ 00,2 x)) = — i (xx)].

Analogously the kernel §,(x,x’) can be introduced as

S\xx') = (¥'V; + m)G "V (x,x). (33)

However, S,(x,x’) is not invariant under an orthonor-
mal base transformation as can be seen when it is expanded

in terms of the base {y{™'},

Siex) =3 spie (i) (34)
5h

(see Ref. 3). Therefore, the formalism stated in Ref. 4 to sin-
gle out one of these possible biscalar kernels satisfying Lich-
nerowicz’s conditions is now sketched and extended to the
spinorial case. It will be used to select one of these S, (x,x’)
and, thus, the particle-antiparticle model.

The new condition introduced assumes that a different
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kernel could be associated with each point x,, of space~time,
which in this case will be called S {*/(x,x’), due to the nonexis-
tence of a global momentum space. However, if some sym-
metries hold all § {(x,x’), for x, belonging to certain kind of
surfaces (for example, over {# = const} hypersurfaces in a
Robertson-Walker spatially flat universe) will coincide (they
will be called S 7 ™), and a particle definition will be possible.
Two natural properties should be satisfied by these S o(x,x’).
They are: (i) Minkowskian limit; (ii) their singular structure
must be the one of the flat space~time S [s(x,x')] (s is being
the geodetic interval between x and x'). This last property
displays the fact that the particle model should reproduce
the flat-space—time high-energy behavior.

We now use Eq. (33), and imposing .S, (x,x’) to be a solu-
tion of the Dirac equation shows that the analogy with the
scalar case can go even further. In fact,

PV, — miS\xx) = (42 ~ MG\ Hxx) =0 (35)

shows that G {/?(x,x’) is obviously the generalization of the
flat space-time J4 ,[s(x,x’)]. Therefore, condition (ii) can be
restated in these terms: G {“?(x,x’) should reproduce the dif-
ferent dependences of 4,(s) on s. In fact, 4 ,[s(x,x')] as a func-
tion of the geodetic interval s(x,x’) is

4(s) = (m’/4m)Im [H {(ms)/ms], (36)

where H'" is the first order and first-type Hankel function
which when developed for small s has a quadratic divergence
independent of mass, a logarithmic one, a constant term, and
terms vanishing as s does. The different behaviors with re-
spect to s can be identified with successive derivatives of 4,
with respect to m? (see DeWitt'), i.e., 4 ,(s) essentially has a
quadratic divergence, 34 ,/dm? starts with a logarithmic
one, d24,/(0dm?)* is regular, and so on. The generalized ker-
nel G {V?™l(x x') should reproduce the flat space-time de-
pendence of 4, on s, but in principle any bispinorial regular
function may appear as a multiplicative factor of each term
provided it satisfies its Minkowskian limit.

(i) and (ii) can now be joined into

. . i anA (s)
lim G{/%(x,x') = lim Fl(x,x’ 1 37)
x’—>xu ! ( ) x,"x" ,,;o ( ) (amZ)n (
with
Fglex) = 1] ifR,, =0 (A .
Ry = at space-time),
FE:o)(x,x’) p— 0 ijkl ( p )

n=0,12,.;a=12.3,.., and it constitutes together with
(34) the minimal hypotheses to define a “good” .S,(x,x’).

B. Construction of the model

The functions F {(x,x’) are required to be real symmet-
ric bispinors (see Ref. 3). As they and their derivatives will be
evaluated in a power series development of the metric de-
rivatives, general expressions for the coincidence limits have
to be given. The curvature, the metric tensor, Dirac matri-
ces, and the mass of the particles are the only candidates
available for a covariant expression. The selection of the
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terms involved in the coincidence limits is based on dimen-
sional and Minkowskian limit considerations. In atomic
units (#i = ¢ = 1) the mass has frequency dimensions, the
scalar curvature R squared frequency dimensions, and ex-
pressions (A1) explicitly indicate the dimensions of Dirac
matrices. There will be terms containing the curvature, but
neither derivatives nor higher powers will be considered, as
it will be explained below. It can then be written

lim F{lxx') =1,
X—+X,
XXy

lim V,F§(x,x') =0,
X—»Xo
X'—»Xq

lim F%(x,x') = (m?*~ 4R, (38)

lim V. F§xx') = (m*?*~'[B,Ry, + C,R;¥’],

lim V,V,F{xx') =

X—>Xq

(m*)"[V, R,

X' —xq

+ W,Rg; + X, Ry v
+ Y, Ryu¥ '+ Z,Ryuv'r* )

as the most general covariant expression. The symmetry
properties of the curvature tensor and of the products were
used to eliminate other possible terms (e.g., R, 7 “v;

Ry, v;, etc.).

It must be emphasized that dimensional considerations
prevent including higher orders or higher derivatives of the
curvature up to the second order of the Taylor development
of any F'™)(x,x'). Moreover, higher orders of the Taylor de-
velopment will vanish at the order considered in the curva-
ture. In fact, if the singular structure of the flat space-time
derivatives of 74 ,(s) with respect to m? is also expected to be
reproduced by the derivatives of G {"/?(x,x’), i.e.,

FG 2
lim -—E—f’fﬁ lim EF"‘"’(x,x)

X' =X

oA (s) 39)

XX 4= |
x'—X,

it can be proved that F§ cannot depend on m?, F can
only linearly depend on m?, F % quadratically, etc. There-
fore, the terms considered are all the terms that, up to the
order of the curvature, will appear in the complete series.

The formalism is now developed in a spatially flat ex-
panding Robertson—-Walker universe (3). In such a metric
the bispinorial distribution G {/**)(x,x') is expected to be the
same function for all x, belonging to the surface 3 (x,) = {x/
t (x) = t (x,)} and therefore to define a good particle model ifit
verifies conditions (34) and (37).

The following expressions are obtained from (38) for the
functions needed to develop S {*/(x,x"):
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Fg")(xaxln}:m) =I- %HYDYLI’II + %azrz
X[(Vo+}‘)H2“R (Vo + Wo)] + -
aoFgO)(xJI”z(x(,)
= = [(Xo +1Yo)R + 2YoH [ yar” + -,
Fi:‘))(x,xl)'):(x‘,} = (mZ)a ~'4,R + (mz)a !
X[ (B +3C) — CoH? Y 7" + -, (40)
OoF ‘;")(x’x')lqu(,)
= (mP% = '[ (Ba +4C2 )R + 3C, H?]° — (m?)"
X[(Xu +1Y, )R 4+ 2Y,H? 19,7 + -
[R and H should, of course, be evaluated at ¢ (x,)]; we have
used expressions (A2) to eliminate some of the terms appear-
ingin (38) and V,V,F = 9,0,F + (0,0,)F + 0;0,F + o,V,F
—}V,F.

We also need 4,(s) and its derivatives. The results ob-
tained in Ref. 4 are only listed here:

Sxx')| s =a’r (1 + L a’rH?),
0ps*(x,x')| s = — a*r*H + -
Boos7(x:x")| 5 =2—+—2a2r2(H2+1R )+

_ 1 a e _im_H_z )
Ailsls - (2ma) fd K Wy \1 8 wy of )
{(41a}
H v[kr m2
- ), (41b
il = f (1+2wi+ )( )

— ik

1 3y €
80041(5)|z—mfd k o

k

7 R m?
X| —o, +|—H>+ )(1+ )
[ ) (3 9 20}

+im_Hz ]

wk

(41c)

where all the terms have been completely Fourier-analized.

We are now able to construct S {™(x,x’) and its deriva-
tives and replacing them in (37) to determine the coefficients.
It is easy to see that F ™ having 7 > 2 need not be included as
they will contain higher powers than the second in m? and
their coefficients will vanish or appear in a combination
which will vanish when the different terms of the polynomial
in (m*/w}) are equated to zero.

When (40) and (41) are replaced in {37) and the function
G "?(x,x') obtained in this way is replaced in (35), most of
the coefficients are determined. In fact, if the particle model
is to be defined for any possible evolution of the universe,
terms involving R and A * must vanish independently, and it
1s therefore obtained that V, = 1/6,4, = — 1/12 and

=Cy=B,=C,=V,=W,=V,=W,=0.

We now ask Eq. (34) to be satisfied to determine the
remaining coefficients.

Using the orthogonality conditions (11) and Eq. (33) (see
Ref. 3), Eq. (34) can be written as
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Sl(x,x')= EJ‘d:;ke_ik.r [ __”(I:')(‘F,h)(t)l—l(':')(‘f':h)(t’) +”(l;")(—vh'+1—7(f_’(k—-h)(t)]_ (42)

1
(2maP 4

On the other hand, if we replace in (33) the function G {"?(x,x’) with the coefficients already determined, we get

_ — ikr 2 4 15
s [ (o o )2 () 2 )
k k
2

15 m

+ R X.}._Yi 1l _m (_1_+3W +X +Y)+___(X +L)]+
wk[° 3 T4 w12 T s 3
2 2 2
+m[1+_5_m__1_1_(1+ )+LL _1.+m_2(_§_,4 ] }) (43)
8 vy wp o 4 0|6 owp\4
I
which can be expressed as (6% — wi) —(k*/aY)B* + 6% =0,
Sie) = —— (@ < prig ww
x,x') = ,
! (2ma)® f )y [6% —wi + (k*/a®)B?* +869])[6° — wi — (k*/d?)

where M (k) is a matrix containing only the spinors 7, k,9* (B” + 8] =0.

and $°k,, »%, and which under comparison with (4) has the

.y i ion must
explicit form One of the two members of the lhs of this expression

vanish, and the zeroth order (flat space-time limit) indicates

M (k)= 0 (k) — iB(kk,v* + i8(k)yk,y~ that it is the first one. Therefore,
Comparing (42) and (44) and using the orthogonality condi- 6%=aw? — (k*/a®)B? — &
tions (11), we get
. . . . Replacing 8, B, and 8 from (43) and equating the corre-
(1w + 6 + iBkav* — 8y ke 1" = 0. 43) sponding orders in (m*/w;) and H and R, all the coefficients
Now, in order that this system of equations have a solu- are determined. Indeed it turns out that ¥, = — 1/8, and
tion different from the trivial one, the determinant of the the remaining coefficients vanish.
coefficients must be zero. This condition implies We can therefore write

— ik 2 2
Six,x’) = : 3fd3ke [—ikaya[l _%H_Z(L‘*'im_Z)
Wy @

(2mra) 2wt \8 8
2 H? imHy’k
__R +...]+m(1+im_£f_+LL+... mHyky" ) (46a)
240? 8 o W 24 w? 202

It can be seen that the same expression is obtained if we Ox,x') = 4 Y (x,x )[ 4,s)— (§ + ) o4, ] + -
write, as it would have been naturally expected,

. 1 — ikr
8,(xx') = (1Y, + m)T(x,x')G Vx.x'), (46b) = mal f d*k
(2ma) oy
where T is the displacement bispinor, satisfying » ll 5 L H_2 1 m_2 H_2 _ R
1 8 w w@ 4 wi 0wl 27
Hp o L& =0, limT(xx') =1 .o ko ‘
2 Ix; 2 Ox, x—ox’ 1 1 m
x| (& + )+—— +] (@7)
{see Ref. 7) and which, evaluated over a spatial surface 6 12
S = {t = const} reads with £ = — 1/4, a natural condition arising from Eq. (35),
Tiex) =1 — e 2202 Le., every Dirac equation solution is also a solution of the
] (e’ HY'Var + Ja + Klein—Gordon equation with a d’Alembert operator defined
and its temporal derivative asd ¥ = _ V.V 4 1/4R, and

3T (x,x") = — (R /24) + (H /&)Yy . 7* + .

1
4(xx)= — ”zxdet[——a a,s%(x ’] —Uy
G (x,x') is the scalar kernel obtained in Ref. 4, namely, bex) g7 2 H bex’) g™ )
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is the Van Vleck determinant.

It must be pointed out that an equivalent expression has
been obtained by DeWitt’ and by Bunch and Parker® with
different methods and based on different physical principles
and that it can also be obtained if Eq. (A3} is used, i.e., we
obtained the adiabatic particle model. In fact, it was shown
in Ref. 8 that both the proper-time and the momentum-space
representations lead to a Feynman propagator G {/%(x,x’)
equivalent to that explicitly indicated in expressions (46),
namely 7 (x,x')G ¥(x,x'). However, those G {!/?(x,x’) are con-
structed to solve the renormalization of a A@ * interacting
theory and neither is required to lead to a particle model.

Moreover, it can easily be seen that the kernel S {x,x’)
found leads to the particle—antiparticle model expressed by
spinors (10). In fact, if the following identification is made,
(¥ is a particle with positive (negative) helicity,
I (7 =) and @ (W) is an antiparticle with
positive (negative) helicity, /7"~ *'(IT{" ~- ), and they
are replaced in (42), expression (46} is obtained.

The formalism we have introduced can be extended to
the massless case and the corresponding kernel can be ex-
pressed as

Sixx') =YV T (xx) D (xx)], (48)

where & |(x,x’) is the massless scalar kernel of the operator
{4 4+ 1/4R ) namely

F (xx)s = — 1/a*F + (R /48)In{@®F) + ~  (49)

up to second order. In fact, it has aiready been pointed out by
DeWitt’ for the scalar case that an expansion corresponding
to (37) involves inverse powers of m and can therefore not be
used when m = 0. The corresponding expression is then ob-
tained transcribing the singular structure of D {[s(x,x")].
Although this formalism can only be implemented in a
power series development and the massless case has a simple
exact solution, it can easily be seen that (48) leads to (15).

IV. DISCUSSION

The formalism stated above helps to select a function
S, (x,x') which leads to no particle creation. Indeed as it is not
able to select a different bispinorial kernel S\(x,x’) on differ-
ent Cauchy surfaces, it therefore defines the same particle-
antiparticle model at different times [i.e., §,(x,x') turns out to
be independent of the surface 2 ]. However, the mechanism
of particle creation has been studied in asymptotically static
universes (“in—out” theories’) where the particle model is
perfectly defined in the far future and past (plane waves) and
a nonnull creation has been found. Therefore, there must be
some terms which, although they satisfy the minimal hy-
potheses we have mentioned in the preceeding paragraph,
are nonanalytical, i.e., they will never appear in a Taylor
development (e.g., terms of the form e ~ * will not appear in a
power series of k ). This problem has been partially solved
by Chitre and Hartle'® for the scalar case. In fact, a kernel
G Q)(x,x') was there found using path integral methods which
leads to a reasonable particle creation (blackbody spectrum)
when a linearly expanding universe is considered. In Ref. 11
some physical reasons supporting that choice are displayed,
which will be implemented for the Dirac case in a forthcom-
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ing paper. Indeed different boundary conditions should be
satisfied by the kernel G P(x,x')(G {"¥(x,x’)) on different
Cauchy surfaces, in particular near the singularity or on an
adiabatic surface, allowing the choice of a different kernel in
each case and thus leading to the creation of particles. The
formalism which will be necessary to compute this creation
has therefore already been introduced.

APPENDIX

The following identities evaluated in metric (3) were
used throughout the paper.
The spinorial affine connection reads

o,=0, o,= %H)/Oya.

Dirac matrices ¥, can be written in terms of Pauli matri-
ces as

{yip}t =297,

e )

(0 1) (O —i) (1 0 )
o= , O =1{ . y O3 = ’
1 O I 0 : o —1

and they can be defined in this metric in terms of an arbitrary
representation of the flat space—time constant ones y; as

P =7 y=a) '

Yo=Yo Ya=0a-
The nonvanishing coefficients of the Riemannian con-
nection are

(A1)

re,=re¢,=H=a/a.

The scalar curvature

R= —6(H+2H?).

The nonvanishing components of the Ricci tensor are
R, = —ad}R/6 —H?, Ryp=3H"+R/2,

aa

o _
r., =aa,

and the independent ones of the curvature tensor

Ruopo = — 8RR /6 + H?), A2

Rg = —a*H*8,,85, —8,.84.)

The solution to Egs. (12)~(13) up to second order in a
power series of the Hubble coefficient H are

0, :wk[1+__2’m (1+_ﬂ)£

@y Wy ) Oy

240, oy ) o
] ] H (A3)
A, _wkl1— im (1_ ”’)#—
20, Wy / Ok
N +5 m' _ m’ m3)H2
(— 8 wp + 8wi 2wy ) o}
L_m (1 _ﬂ)_& ]
T 24w, o, ) o}
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We show that the Bécklund transformations for the SU(r) principal o-model may be linearized
using a geometrical interpretation of these equations involving the minimal orbit of SU(n, #) in the
Grassmann manifold G, (C?"). Linearization puts the equations in Zakharov—Mikhailov—Shabat
(ZMS) form. Using this form of the equations, we prove inductively a nonlinear superposition law
and a permutability theorem for iterated Backlund transformations analogous to known results in
the theory of the sine—-Gordon and KdV equations. From the superposition law we get an explicit

form for multisoliton solutions to the o-model.

PACS numbers: 11.10.Lm

1. INTRODUCTION

The two-dimensional principal U(n) o-model is defined
by the equations’

€eg "), +E,8 =0, (1.1)
where{ = I(x + ¢)and 7 = }{x — ¢ ) may beregarded as light
cone coordinates in a two-dimensional Minkowski space and
gl&, m) is a U(n)-valued function. [We shall mainly be con-
cerned with the case where det g = 1, i.e., geSU(n) but refer
part of the discussion to the general case geU(n).] This and
similar models have been subject to considerable study in
recent years, and it is known that they share many of the
properties typical of completely integrable systems.”"!" For
example, there exist an infinity of conservation laws, both
local and nonlocal, these being derivable either from Back-
lund transformations (BT) or from the linear equations of the
inverse scattering method. The latter were shown by Zak-
harov, Mikhailov, and Shabat®’ (henceforth ZMS) to be
solvable through the classical matrix Riemann problem,
and, in particular, this method was used to derive multisoli-
ton solutions.” However, for many other integrable systems,
soliton solutions can be obtained more directly and simply
through the use of Bicklund transformations'? (henceforth
BT). Moreover, for those cases where a permutability
theorem holds, the multisoliton solutions may be obtained
recursively, giving rise to a sort of nonlinear superposition of
individual solitons. It is our purpose to derive such a result
for the BT of Eq. (1.1). To carry out this program we show, in
the next section, how a natural geometric interpretation of
the equations of the BT leads to a linearization, expressing
their solution in terms of the solution to the ZMS equations.
In Sec. 3 we use this linearized form to prove, recursively,
that the solution to an iterated sequence of BT s is given by a
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ment du Québec.
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the Negev, P.O. Box 2053, Beersheva, Israel 84120.
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nonlinear superposition law. The explicit formula implies a
permutability theorem. Our methods depend on certain
identities which only become clear when the equations are
written in ZMS form, but the proofs are self-contained and
do not use the ZMS theory.

2. GEOMETRICAL STRUCTURE OF BACKLUND
TRANSFORMATIONS AND LINEARIZATION

Consider the BT’s for Eq. (1.1) as given, e.g., (within
slight modifications), in Ref. 10:

g,ggil — 8080 = — Aol88o 1)‘5 {2.1)
8:80cU(n),
g,ng‘l — 8on80 "= Aolg8s 1)_77 (2.2)
with the constraint
Aog8s '+ Ao8eg ' = Ao+ Ay (2.3)

In fact, we shall only be concerned with solutions g, which

lie in SU(n). As we shall see, the resulting g is, up to a con-

stant phase factor, also in SU(n).

It is evident from Eqgs. (2.1) and (2.2) that if g, satisfies
Eq. (1.1), so does g and vice-versa. What is not evident by
inspection is that if (2.1) and (2.2) are regarded as a system of
equations for g, with given g,€U(n), the system is integrable,
with geU(n), and that the nonlinear constraint (2.3) is compa-
tible with Egs. (2.1) and (2.2). To verify these facts and to
simplify the analysis of the underlying equations, we intro-
duce the new function

U=ggy ' (2.4
in terms of which the system (2.1}, (2.2), (2.3} becomes
U, = (1/]1 + A0]?)

X § — AoAo + AgU — (1 4+ Ag + Ag)UAo + A,UALU |,
(2.5a)

U, = (1/]1 = Ao

X { — AoBo + BoU — (1 — Ag — Ao)UB, -~ AUB,U |
(2.5b)
with the constraint
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AU? — Ao+ AJU + A= 0, (2.6)
where

AOEgo,g g& '=—4 S, BoEgo,ngo— "= — Bg- 2.7)
The requirement that g, and hence U, be unitary,

Utu=1, (2.8)
makes (2.6) equivalent to

AU+ AUt = Ay + A, (2.9)

It is easily verified by cross differentiation that the integrabi-
lity condition for (2.5a), (2.5b), for any 4,, is that g, satisfy
Eq. (1.1).

To study the constraints (2.8), (2.9), we make use of a
geometrical interpretation of the matrix Riccati equations
(2.5a), (2.5b), which at the same time shows how they may be
linearized." Let G, (C*") denote the Grassmann manifold of
n dimensional subspaces of C*". Homogeneous coordinates
may be introduced, representing each subspace by the rank »
rectangular matrix (% ), X, YeC"*” whose columns span the
space. The points of G, (C?") are identified with classes [} ]
under the equivalence relation

({,) ~ (’Z ) TeGl(n,C),

corresponding to a change of complex basis. On the affine
subspace with det ¥ #£0, we may introduce the affine coordi-
nates identifying the point [ ] with the complex n X n ma-
trix

(2.10)

U=XYy . (2.11)

Introducing a Hermitian structure on C*” represented in the
standard basis by the matrix

h_(]l 0)
“\0 -1/

we identify the submanifold G %(C*") of totally isotropic sub-
spaces defined by

(XY ha (’;) =0,

X'X=Y"Y.
The fact that (3 ) has rank n, together with (2.13), implies
that Y'is nonsingular, and hence the affine coordinates (2.11)
are well defined on G $(C*"). Equation (2.13) is then equiva-
lent to the fact that, on G2(C*"), U is unitary:

UtU=1. (2.14)
In fact, the resulting correspondence is easily shown to de-
fine a diffeomorphism U (n)~ G °(C?").

The group S1(2n, C) acts upon G, (C*") in the standard

way induced by the linear action on C2". In terms of affine
coordinates, the action of an element

(2.12)

(2.13)

ie.,

P
(R Q)eSl(Zn, C), P,Q,R,SeC™ ", (2.15)

S

is given by the linear fractional transformations
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C: Q): U—~PU+Q)RU+S)™". (2.16)

S

The infinitesimal form of this action is defined by a Lie alge-
bra homomorphism ¢: sl(2n, Cy—y(G, (C*")) to the algebra of
vector fields (i.e., infinitesimal displacements) on G, (C*"), de-
fined in affine coordinates by

¢ (p ‘s])r—-)—— {g — Us+pU—UrU}.Vy,

r
(’: Z)esl(Zn, C). (2.17)
Given any curve
plt) qlt)y .
(r(t) s(t)) in sl(2n, C),

the corresponding -dependent vector field on G, (C*") de-
fines the matrix Riccati equation

U(t)=gq+pU— Us — Url, (2.18)

whose integral curves are such that the tangent at U (¢ ), for
any ¢, is

2 ()

The same construction is applicable to systems of matrix
Riccati partial differential equations, where the parameter ¢
is replaced by the independent variables {z'},_, ., pro-
vided the equations satisfy appropriate integrability condi-
tions. A system of integrable PDE’s of the form

S =4 +pU—US, U,
tl

U=U(t,
q: = q,lt), p, =pit),
t=(t,,....L , JER™,

(2.19)

s; =s5;(t), r, =rlt),

may be interpreted as defining (locally) a horizontal (covar-
iant constant) section of the trivial bundle with fibre G, (C*")
over R™ associated with the group action Sl{2x, C): G, (C*")
+—G,,(C*") to the trivial principal bundle Sl(2n, C) X R"—R"™
with connection form

1 Pit)  qilt) ; -
0gy = —Adg~ (r,-(t) s,-(t)) dt'+g~'dg. (2.20)

The integrability condition is the vanishing of the corre-

sponding curvature
N =do + }[w, 0] = 0. (2.21)

The covariant constant cross sections defined by integration
of (2.19) are the maximal integral manifolds of the horizontal
distribution spanned by

i t i t
xe _¢((p() q()))_
at' ri(t)  si(t)
The corresponding horizontal cross sections of the principal

bundle o: t —(G (t), t) are defined by the S1(2x, C)-valued
function

_(P(t) @)
G(t)_(R(t) S(t))’
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satisfying the linear equations

J (P Q)__(i %)(: Q)
e s)= ros p (2.24)
with initial condition, e.g.,
Git,) = 1. (2.25)

The general solution to {2.19) is thus obtained by applying
G (t,) to the initial value U,

Uit) =X ()Y ~'(t)

= (P(t)U, + Q)R (U, + S (1) ™', (2.26)
where
Uy=X,Y, ! (2.27)
and the homogeneous coordinates may be taken as
Xt _(P) Q\(X,
<1wq>" t) S(ﬂ)();)' (2.28)

Restricting now to the the subgroup SU(n, n) consisting
of those transformations preserving 4, we have

P'P_R'R=1,
P'Q_R'S=0,
0'0—S'S=1.

(2.29)

The infinitestimal form of these relations, defining the subal-
gebra su(n, n)Csl(2n, C) is given by

p'=—p

r'=gq,

s s, (2.30)
together with

trp + 5) = (2.31)

This subgroup clearly preserves the submanifold U(n)~G ¢
(C*")C G, (C*") and it is easily verified that the action is tran-
sitive. That is, G ©(C*") ~ U(n) is identifiable with a single
orbit of SU(n, n) in G, (C*"), the one of minimal dimension. It
follows that if the coefficient matrices {p;(t), g;(t), #;(t), s:{t)}
in (2.19) satisfy (2.30), (2.31), then the group-valued function
G (t) obtained by integrating (2.24), (2.25) will be in SU (#,n),
thus preserving the Hermitian form /. Consequently, the
isotropy condition (2.13) will be preserved by the solution
(%) given by Eq. (2.28) provided it holds for (), or
equivalently, the unitarity condition (2.14) holds for Uit)
provided it does for U,

Notice now that Egs. (2.5a), {2.5b) are precisely of the
form (2.19), with t = (&, %) and the coefficient matrices sa-
tisfy the relations (2.30) defining the su (1, n) subalgebra. The
above considerations therefore prove that the unitarity con-
straint (2.8) is preserved. Moreover, the general solution is
given by Eq. (2.26) or (2.28), with the group-valued function

_ (P& Q&
GEm= @m)sgm)
satisfying

370 J. Math. Phys., Vol. 25, No. 2, February 1984

|1+4o|2_
( ljl(;AO (1+2010/10)Ao)(£ g), (2.32a)
e
(o U_;jz';;wo)(;; 9 o

The second constraint (2.9) may also be expressed in
terms of the preservation of a Hermitian form, since it is
equivalent to the relations

o))

defining the submamfold G °(C?") of maximal isotropic n-
dimensional subspaces of C*" under the Hermitian form

5261-45129

The intersection of SU(n, n) with the subgroup of G(2#, C)
preserving & consists of those elements commuting with the
transformation

(2.33)

(2.34)

r=h = ( (2.35)

0 Ao )
—Ao Ao+
Since this transformation has two distinct eigenvalues Ay, A,
each corresponding to an n-dimensional space of eigenvec-
tors, the subgroup of Gl(2n, C) commuting with it is equiva-
lent to Gl{n, C) X Gl(r, C). Making the appropriate change of
basis diagonalizing ¢, this subgroup consists of elements of
the form

P Q) (K O)
=T T .36
(R S 0 L (2.36)
where
1 201>
T= . 2.37
(1 2,1 (2.37)
The further condition that 4 be preserved implies
L=K""" (2.38)
The condition
P Q)
det =1 2.39
e& s (2.59)

only implies det X is real; however, since we are only inter-
ested in the action of this group on G, {C*"), we may take
det K = 1. This will be seen to follow from the block diagon-
alized form of Egs. (2.32) without any renormalization of the
Kin (2.26), (2.36), provided det g, is constant, and in particu-
lar for g,eSU(n).

Thus, the underlying group which simultaneously pre-
serves the two constraints (2.8) and (2.9) is the subgroup
Sl(n, C)CS1(2n, C) defined by the embedding

K
KL»T(O KT_JI“*emamqm (2.40)

KeSl(n, C).
Harnad, Saint-Aubin, and Shnider 370



The corresponding sl(n, C)Csl(2n, C) subalgebra is defined

by

k

0
kesl(n, C). (2.41)

To preserve the constraints (2.8) and (2.9), the algebra ele-

ments defining the matrix Riccati equations (2.19) must thus
all be of the form

0
k}—-»T( _x T)T‘ 'esl(2n, C),

1

p= gz Yokt Aok ),
g= A:_Zﬁo ke + kT,
(2.42)
r= fT k+ k),
s= — /10120 Aok T + Aok ).

Comparison with Egs. (2.5) shows that this is indeed the
case, with

k=Ay/(1 + 4, for(2.5a), (2.43a)

k=By/(1 — A4, for(2.5b) (2.43b)

The significance of this construction is that it not only
demonstrates the consistency of Egs. (2.5) with the con-
straints (2.8), (2.9) but also indicates how (2.5) may be linear-
ized. From Egs. (2.36), (2.38), (2.42), (2.43a), and (2.43b), we
see that (;  §) may be expressed as

C’; Q>=(40K—ZOK*'1 —EO(K—K*I))
S AdK—KT=Y)  —AK+A KT
(2.44)
where K (£, i) satisfies
K, =AK /(1 4+ 4), (2.45a)
K, = BK /(1 — 4,). {2.45b)

Notice that, provided det g, is a constant, Eqgs. (2.43) imply
tr A, = tr B, = 0and hence, from Egs. (2.45), without loss of
generality we may take det K = 1 as previously stated. Thus,
by Eq. (2.26), the general solution to (2.5a), (2.5b) is given in
terms of X (£, 7) by

U=[(AK — 2K~ YU — oK — KT~ )]
X [AolK — K= YUy + (— 4K + A,K T~ 1)] 7. (2.46)

Equations (2.45) are precisely those of ZMS, which are
the starting point of the inverse scattering approach. Here,
they have been derived as a consequence of the Biacklund
transformations rather than vice-versa. To facilitate further
comparison, we shall henceforth adopt the notation of Refs.
5-7, writing

Ye(do) = Aot/ (1 + Ao), (2.47a)

¥, (Ao} = Bot/(1 — Ag), (2.47b)
with

K =y(A,). (2.48)
371 J. Math. Phys., Vol. 25, No. 2, February 1984

Note that, because 4,, B,cu(n), we have

KT '=9d,) (2.49)
Furthermore, writing
U=1 + [, — Ao}/, P (2.50)

the constraints (2.8) and (2.9) are equivalent to the conditions
that P be an orthogonal projector

P*=P, P=P" (2.51)

Substituting (2.48), (2.49) in (2.46) and solving (2.50) for P
gives

P =Y Ao)m[Yidom + PlAo)1 — 7] ', (2.52)
where
= [/lo/(/_io — AU, — 1] (2.53)

is the value of P which corresponds to U = U,,. [Note that P
and U need not necessarily assume these values at any initial
point, since we have not required the initial value of (4 ) to
equal unity.] Since P is an orthogonal projector, it may be
written

P=MM'M)"'M", (2.54)

where M is a rectangular » X k matrix whose columns span
the image of P. Similarly expressing the initial value as

7 =m(m'm)"'m’, (2.55)
Eq. (2.52) is equivalent to
M = Y dom (2.56)

precisely as in ZMS. [Notice that even if m is chosen as a
unitary basis, M will not be because ¥(4,) for complex A, is
not unitary.] From Eq. (2.50) we see that

det U = (Ao/A)* (2.57)

and therefore det g differs from det g, by this constant phase
factor. Since rescaling preserves Eq. (1.1), we may interpret
(2.1)and (2.2) as a BT for the SU(n) o-model by modifying the
normalization of g in (2.3) by (1,/4,)*”". The modification
thus depends on the rank of the projector determined by Eq.
(2.3).

3. RECURSIVE SOLUTION OF BACKLUND
TRANSFORMATIONS AND SUPERPOSITION FORMULA

We now turn to the problem of obtaining iterative solu-
tions to the Béicklund tranformations; that is, solving a se-
quence of equations like (2.1}, (2.2) with the input g, deter-
mined as the solution for the previous step, a new value of the
parameter A, being introduced at each iteration. The defin-
ing equations of the sequence are thus

8.:8 '—g 1,§gi:11 = —Alg.g" Jes (3.1a)

8in8i '—g 1,178.:‘1 =2,(g.8_" s (3.1b)

Aigig +Zigi— & =4+ Zi’ i=1,.l (3:2)

Applying the linearization procedure of the previous section
to each step, we have

—(1+Z"_
8= g

i

A;
P lg_=Ug ,, (3.3)

where
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P=M(MM) 'M] (3.4)
MeC"™", k, =rank P,

and
M, =y,_,(L)m, (3.5)
M!=miy - (A,), meC™",

where
YieA)=A44,/(1+4), (3.6a)
Yi,A)=Bp/(1=1), (3.6b)
4; =887 " B=g,& ', i=0]1,..l (3.7)

As pointed out in the previous section, these equations
(ignoring the index /) are the starting point for the ZMS ap-
proach to the o-model. In that approach the three matrix
functions (1 )(&, n), 4 (&, 7), B (§, 7) may be regarded simulta-
neously as unknowns of the system, and the consistency of
the system together with A analyticity of ¢ implies that
¥(0) = g is a solution of the field equation (1.1). However,
since this same system is the linearization of the BT, it pro-
vides, as we have seen in Egs. (2.50), (2.52), and (2.4), a new
solution to the field equation as well. The remarkable fact
shown by ZMS is that there is a transformation, defined be-
low in Egs. (3.8) and (3.12) of the entire system ¢, (4 ),
A; _,B,_, toanewsystem ¢;(4 }, 4, B;, of which the BT is
just the A = O special case. This fact implies that the solution
to all iterated BT’s should be expressible in terms of solu-
tions to the first BT. In what follows we prove these results

directly from the BT.
Let
x4 )E{l + el Pi]
A—4
= i—ﬂ, i=1,.,l, (3.8)
A—A;
such that
& =x:0)g:_,=Ug_,. (3.9)

The U(n) valued function U, satisfies the ith iteration of Egs.
{2.5):

U=/ + A P)[Aid; -y + 4,1 T,

—(14+4,+2)U4,_, +4,U4, U], (3.10a)
[ji,n =(1/|1 _iilz)[ _ZiBi~l +Bi‘1(]i

—(1—4,-2)UB,_, —A4,UB, U], (3.10b)
AU +AUT=4, +4,. (3.11)

We now define recursively the series of matrix functions
Yild )=y, AW _.(4) (3.12)

with ¢(4 ) chosen as the i = Osolution of Egs. (3.6) and prove
inductively that these are indeed the solutions for all i. As-
suming the relations (3.6) to hold for / — 1, and, using Egs.
(3.8) and (3.9), we find that ¢, satisfies the relations
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e am = (14 2 p)
L& Wi - 1+/1i i i—1
A=A,
><(1+ = P,->, (3.13a)
—1 j'i"_zi
(l_i)wi,nlﬁi ={1+ 1— 21, P.|B;_,
(3.13b)

1 A, — 4, p

X ( - 1— Z[ l).
Since the rhs is independent of A and for A = O the lhs be-
comes equal, by the inductive hypothesis and Eq. (3.9), to 4,
and B,, respectively, we see that Egs. (3.6) are satisfied, prov-
ing by induction the result for all /. It should be mentioned
that Eq. (3.6) alone determine ¥; only up to right multiplica-
tion by a fixed matrix; however, this arbitrariness is entirely
absorbed in the matrices m; of Eq. (3.5). From Egs. (3.8) and
(3.13) we see that for all ¢, to remain nonsingular, it is neces-
sary to require A #A4,, A ;» Vj>1. Defining the product

)= [L0) = -xid ) (3,14
we have

%) =04 Wold) (3.15)
and, in particular, for A =0,

g = 1,(0)g,. (3.16)

This determines the solution to the / th iteration to the BT
(3.1) without any integrations needed beyond the first step.
Such a result also follows from the methods of ZMS, but we
have derived it here directly from the structure of the BT.
Although Eq. (3.15) gives a recursive solution to the

iterated problem, it does not express the solution directly in
terms of solutions to the first step; that is, in terms of solu-
tions to

gi,ggf f— 80.:80 = — (8.8 l),g’ (3.17a)
gi,m@f ! — 8o.n80 "= A:(8:8 l),n, (3.17b)
Aggy '+ ;{igogi_ ‘=4, +Zr (3.18)

The solution to these equations is, by Egs. (2.50), (2.54), and
{2.55), of the form

N (Zz “/1,') + —lagt

gi= ]1+ -—/{—Mi(M,»M,-) Mf g()’ (319)
where

M, = ‘//o(zi)mi (3.20)

whereas Eqs. (3.14)-(3.16) are expressed in terms of M, as
defined by Eq. (3.5). It is possible, however, to develop the
product in Eq. (3.14) and thereby derive a superposition for-
mula explicitly expressing ,{/,(/1 ) and hence g; in terms of the
M_’s entering in the solution (3.19). We state the result as a
proposition:
Proposition: Let all A, ;ézj for i#jand 1<, j</. If 4,

= A, for any i#j, let m, and m; be such that the vector
subspaces ¥, and V, m, Spanned by the column vectors of
m; and m,, respectively, are linearly independent (V,,,, ,
Wim; = [0}).
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Under these restrictions and when 4 = 4, for all 1<i</,
the matrix y,(4 ) defined by (3.14) and (3.8) can be written as

- ! M.}/..MT
A)=1+ AL ariy 3.21
xiA) ,-,,2;’1 A4, ( )
where y; is the k; X k; matrix whose components yj;’g
(I<a<k;, 1<B<k;) are defined as follows. Let
TM K, x k ..
r,= T /_1’ eC™™ Y, 1<i,j<l. (3.22)

7
Denoting the (@) element as I" ¥, we may regard these
blocks as defining a « X x matrix I', where

!
k= Yk
i=1
indexed by the pair (ia)( jB ) (1<, j<I, 1<a<k;, 1<B<k;). 'is
invertible and ¥ is its inverse:

(3.23)

y=I"" (3.24)
The (@f ) component of y;; in (3.21) is the (ia)( jB } matrix ele-
ment ¥57.

To prove this result, we first make the assumption that
I as defined by (3.22) is invertible, and show by induction on
[ that (3.21)is valid. We then prove, also by induction, that I
defined in (3.22) is indeed invertible. The validity of (3.21),
(3.22) for / = 1 follows from the definition (3.8) for i = 1 in
view of (3.4) and the equality

M =M, (3.25)
For />2, we have, from Egs. (3.5), (3.12), (3.14), and (3.20),

M, =y M, (3.26)
Assume now that (3.21) is valid for / — 1,
- ) My,M]
=1+ R 3.27
Xi-1 i‘jz=l ppuyy ( )

where {77,;-3 | are the components of the (x — k,) X (x — k;)
matrix inverse of the submatrix of I" with components I" §*
(1<i, j<I — 1, 1<a<k;, 1<B<k;). We thus have

My ,M] )

. A =7 ,
x,m=(1+ - i’h)(lfz

—

I A _zl Mi?i‘MT
+ [( P+ 1) — 7
i,jzzl /7.j — /1, ! A— /‘Lj
(3.28)

To prove the equality (3.21), it is thus sufficient to verify the
relations

. & MM L
A —/i/)P/(]l - z #) = ZMi7f1M7
iLj=1 /{j_ﬂq i=1
(3.29)
and
A, -2 1—1 !
(1+ ! ! PI)ZMJ’U: ZM.’%‘/’ 1<l — 1.
/lj - 11 i=1 i=1
(3.30)
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Using Egs. (3.4), (3.26), and the inductive hypothesis (3.27),
we may replace (3.29) by

A=At AIM, (M 1M,) = = S My, (331)

i=1
Since I' is assumed nonsingular, the set of relations (3.30),
(3.31) are equivalent to the following, obtained by muitiply-
ing on the right by I':

| —

1 -~
P, \My.I,
; _}vl I) lylj jk
+ A~ M, (M M,) "' T, =M, (3.32)
1<k — 1.

i—1 /1
1
5 (144

=1

The 1hs of Eq. (3.32) may be written as

[ ! . Afi;’ijM; n :11“21 P,
et Ap — 4, A — 4,
X(MiyijM}r _ 1‘41'7’171‘{;r )]
A — 4 Ay —4;
+ B2 gy, I(A,)]Mk
A =40 7

AI - ZI ~ -
=i1—-{1+ Zk_/{l Py, (A) (M, (3.33)
by the inductive hypothesis. However, the second term in the
above vanishes since, for 1<k</ — 1,

Xio 1AM =x,_, (’Ek)"'l’k(’lku/k: 1 (A )M
=X 1(Ac){1 = P )M,
=0 (3.34)
and, for k =/ — 1, (3.32) becomes

(1—(1—Py,_,(A)}M, =M,
proving the relation stated.

We turn now to the problem of the invertibility of I". As
above, the proof is inductive. When I” consists only of one
block I'y, , itisinvertiblesince ' = I",, = (M 1M ,)/(A, — A,)
and M, is constructed from independent column vectors.
Suppose now that T, the (x — k,) X (x — k,) submatrix of I"
built from the blocks I';, 1<i, j</ — 1, is invertible. (Impli-
citly, we suppose that A, #A4; for all i#j, 1<i, j<I — 1.) We
suppose further that each P,(1<i</)is of rank 1. Since we
allow possibly degenerate A,’s (as long as the spaces spanned
by the associated m,’s are all linearly independent); this in-
volves no loss of generality. Thus, k;, = 1, 1<i</, and I" and
I are, respectively, (/ — 1)X{/ — 1) and I X/ matrices. Since
the m,’s are all m X | matrices (i.e., column vectors), I';,

= (M !M;)/(A; — A,) are simply complex numbers. The de-
terminant of " is expressible in terms of the determinant of

I
~ MM, =i( MM
detI" =det I - + ( J )
A'[ 1 ij=1 ﬂ-[ _A’]

x( MM, ) (T,
= COolL ),
/{i—/ll Y
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where co(f,-j) denotes the cofactor of 1~",-j ,namely ( — 1)’ */+!
times the determinant of the {/ — 2) X (/ — 2) matrix obtained
by removing the ith row and the jth column from I'. But by
definition of 7 as the inverse of T, these cofactors are related
to the 7;’s by

#; = colly)/det I (3.37)
(By hypothesis, det I #0.) Thus det I is
det = 9L
[ A
1= My, MYA, — A
X{l_ Z 17/11_1( I _1) ]M, (338)
=1 A =44 —4))

We clzlimA that t_he n X n matrix be~tween the curly brackets is
¥i_ 1Ay 1(4,). Indeed, since I' is invertible, the relation
(3.21) can be used for {{ — 1) solutions and

Xi_ Ay )

=(1+ z _}2___’i)

km=1 iI _Zm

- My .M}
i1+ _r-’L_’_)

( i,j§=:1 i1 *”11'

1 ’i‘ Mjf’ﬁf‘_ﬁ ’i‘ A_fjf’ﬁMf
WS A =4 2 A =4

1=l Mm?mkfkj?ji(/lk —Zj)MxT

+ = = , (3.39)
wikm=1 A=A —4))
where we have used the fact that I'' = — I" and hence
' = — #. Since
-1 _ I—1_
Z ?mkrkj = 5mj and zrkjf’ji =6y, (3.40)
k=1 i=1
the last term of (3.39) can be simplified and we have
N - A - 1—1
XA A) =1+ z {A'!Jf/ﬂM:r
=1
1 1 A — Zj ]
X| = + = -+ = =
/lj “Al ’{1 —/{i (11 —"11')(1:‘ —)‘1)
1=V (A, =AM ,M]
=]|.— ( 1 _I) 17/]!_1 . (341)
=1 A =44 —4)
Hence
detI" = [det I"'/(A, — 4,)]
MY Ay M, (3.42)

The problem of the invertibility of 7" amounts then to the fact
that the vector )2, _ (A, )M, is not identically zero. If none of
thed,’s, 1<i<l/ — 1,isequaltoA,, theny, _,(4,)is nonsingu-
lar: each of the parentheses in the following expression

TS S,
I—1 1 /-i] . /?’1* } 1—1
Ay — 4 )( A =4 )
1+ = P14+ = P ) (3.43
() (e I
isaregular matrix. However, in the case where A, happens to
be equal to some of the other A,’s, y, _ ;(4,) is no longer a
regular matrix. For example, if i is such that A, = 4,, then
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1+ [ =4V, —4)]P =1—P,

is singular. In this case, the vector

(3.44)

1—1

foo s, =TT t0)2 - o ()M, (349

=i+ 1
will be zero if

(1—P,)y,_(A,)M, =0. (3.46)
Multiplying by y, _,(4,)~", we obtain

(1= X l4) ™ "Piyi - )M, =0, (3.47)
that is,

M, —MM> M) 'M*M, =0, (3.48)

which is a dependency between M, and M, which contra-
dicts the fact that m; and m, are linearly independent. If
several A,’s are equal to 4,, the same argument shows that I”
will be invertible if and only if the different m,’s associated
with equal A,’s are linearly independent. The proposition is
thus proven.

A corollary to this result is the fact that if any pair of
parameters {4, } is interchanged, together with the corre-
sponding pair of input data {m, }, the iterated Biacklund
transformations give the same result. Thus, for any sequence
with parameters {4, }, another sequence exists for any per-
mutation of the parameters which gives rise to the same re-
sult. This “permutability theorem” is precisely analogous to
those known in other integrable systems, e.g., the sine~-Gor-
don equation.'?

The general multisoliton solution with parameters {4, |
and input data {m,} is obtained by substituting the single-
soliton solutions determined by”:

8o = expldof + Bom) (3.49)
As By

M, = © 4 0 )m,- 3.50

o 5 T .

Ay By =const, [Ay Bgl=0 (3.51)

in (3.16) and (3.21). A more detailed analysis of the structure
of such solutions will be the subject for further study.
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Group theory of the dipole ghost
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The conformal representation carried by the dipole ghost 0O¢ = O is described in a discrete basis;
it has dimension zero and contains the constant solution as an irreducible subspace. A free
quantum field operator is constructed. The representation is decomposed with respect to the (3.2)
de Sitter and the Poincaré groups. A model for coupling relativistically to an external source is
given, in which only unitary mass O helicity O modes propagate.

PACS numbers: 11.10.Qr, 02.20. + b, 11.30.Cp

1. INTRODUCTION

Fourth-order field equations appeared recently in the
gauge sector of conformal QED, in renormalizable and con-
formal theories of gravity,>* and are proposed for confining
theories of strong interactions.* Progress in the application
to gravity and strong interactions is hampered by the appear-
ance of nonunitary ghosts in higher-order theories. So a care-
ful approach is necessary, and taking the possible benefits
into consideration, worthwhile.

A model for fourth-order theories is the dipole ghost®
(000¢ = 0. It will be treated here with powerful group theore-
tic techniques: an equivalent formulation in conformal space
is employed to find explicitly the (nonunitary) conformal re-
presentation carried by the dipole ghost. It suggests a confor-
mally invariant indefinite metric field quantization.

The conformal representation is reduced to the (3.2) de
Sitter and the Poincaré groups. It is possible to couple the
dipole ghost to an external source in such a way that only a
unitary representation of these groups propagates.

2. CONFORMAL PROPERTIES OF THE DIPOLE GHOST
Conformal space

Conformal space is a four-dimensional projective space
X=X %, =x] + X3 + 33 —xi +x5 —xg =0,

(1)
X, =Ax,, A#O0.

It is a compactification of Minkowski space y,, v = 1,...,4.
The two coordinate systems are connected by

Y, =x,/(Xs +X¢), Vi =Xs+Xe B=x"/(xs5+xe);
(2)
B=Oy J’+=1~J’+-

The dipole ghost in conformal space is a scalar field ¢ with
degree of homogeneity O,

(xd)¢ =0, (3)
and the field equation
(@%)%¢=0. (4)

The operator (3 2)? is defined intrinsically only if (3) holds.
Then it is in Minkowski coordinates
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@ =yi'0, (5)
with

o= G G -G

A basis of the Lie algebra of the conformal group SO(4.2)/Z,
is for scalar fields

Mab = - i(xaab —xbaa)' (6)
Positive energy representations have a unique lowest weight
in the decomposition with respect to the maximal compact
subgroup (SO(2) X SO(4))/Z,. They are labeled by the eigen-
values of conformal energy M, and the angular momenta of
SU(2) X SU(2) = SO(4). The noncompact generators are con-
veniently grouped into energy raising and lowering opera-
tors

d .. d
MP=Mg+iM, = —2x;, —————— — (x4 — ixg) —,
6 4 s+ ix) (X4 — ix¢) o,
(7)
d ., d
M =M, —iM, =2x, ——— + (x4 + ix¢}) —
i 6 — 1M, B(xs — ixg) (x4 o) ax,
i=1,235.
Solutions
A solution of Egs. (3) and (4) is
$o=1. (8)

All Lic algebra elements give zero, M, ¢, = 0. So it is an
irreducible trivial representation D (0,0,0) of the conformal

group.
Another solution with positive energy is
¢1 =X,/ (x4 + iXe). 9)

It carries a SO(2) X SU(2) X SU(2) representation (weight)
(1,4,1). Acting with the lowering operators M ;~ gives the
constant solution. A relative lowest weight ¢, leaks into the
irreducible trivial representation. The positive energy modes
of the dipole ghost carry the indecomposable representation

D (1,4,4}—D (0,0,0). (10)

A basis of this solution space will be given later. In principle
it could be obtained by acting with all polynomials of M ;*
on the states (9).
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The constant solution is the “pure gauge” of the solu-
tion space. For the construction of the conformal quantum
field operator of the dipole ghost we need a Gupta—Bleuler
triplet. The conjugate of the constant gauge field must be
another trivial representation ¢, (“scalar field”), which leaks
into the “physical” D (1,4,1),

D(0,0,0~D (1,1,1)}—D(0,0,0). (11)

,2’2
The conditions M —¢, = 0and M * ¢, = ¢, can only be sat-
isfied (up to a factor and an additive constant) by

8, = Inlx, + ixy). (12)
The compact generators M, M,; map this state into a linear

combination of itself and the constant ¢, fulfills the field
equation (4 ?)*¢ = 0, but not Eq. (3),

(xd)g, = 1. (13)

So, Eq. (3)is the “Lorentz condition,” which projects on
the “physical” and the “gauge” solutions. The field equa-
tions which hold for the full Gupta—Bleuler triplet are Eq. (4)
and

(xd )¢ = 0. (14)

&, is an adjoint homogeneous function of degree 0. It is con-
tinuous on the universal covering of conformal space.

Homogeneous propagator

On conformal space, the only invariant regular distri-
bution of x, and |x, | is |xx'| ~“. The limit a—0 yields 1, the
homogeneous propagator of the trivial representation. To
obtain the Gupta-Bleuler triplet, we can expand

lim (|xx'| =% — 1)/( — a) = In|xx’|. (15)

a—0
This suggests for the dipole ghost of positive, respectively
negative, energy appropriately-regularized distributions
In{xx’) , . They are unique up to a factor and an additive
constant, which corresponds to a change of gauge.

Decomposing the homogeneous propagators in energy-
and angular-momentum eigenfunctions gives a discrete ba-
sis of the dipole ghost and its invariant (indefinite) norm. It is
convenient to introduce the conformal time coordinate ex-
plicitly and use coordinates ¢, s;, p,

X, =ps;, xa=psina, xo,=pcosa; p=Ap, s*=1.

(16)
Then we get with 7 =a — o,
D *(x,x')
=1+ In( — 2xx') . =1+ In[ pp'(2 cos(r + i€) — 2s5’)]

=1+ In|pp’| Fir + In(l — 2ss'e T 17+ | g+ 2irxien (17)
The last logarithm is a generating function of the Gegen-
bauer polynomials C),

Inf) = — i Css"Ye £,

n=20

Using C' = (1/n)(CY — C'V_,) and the addition theorem
for four-dimensional spherlcal harmonics, we get

D xx')=In|pp'| —ir— ¥ - .2”2
i+ 1)
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X z Y ()Y it (s')e'
ILm

z Jim (S) yvjIm (S’)ei(j * 2'7‘

(18)

1+2)(J+ 1

The Y are normalized by

fdaﬂ YIM(.Q) Im(ﬂ)_ 511 mm’ s
and j>1>|m|.
Expressed in the basis states
S(x) = ln(x4 + ix6) B ]np + ln(ie - ia),
gx)=1,
(19)
Pim %) = V2a/(j(j + 1)V2Y,, e,
Gim (%) = V27/(( + 2] + 1) Xy, €0+ 2,
we have
D +(x,x') = S*(x')g(x) + g*(x')s(x)

— 2 p*ix’) plx) + Zg*(x’)g(x). (20)
The ““scalar” and the “gauge” modes aresand g; p and g area
basis of the nonunitary D (1,2,2) The weight diagram of the
solution space (19) is given in Fig. 1. Compared with a gen-
eral spin-0 representation it is very restricted. This is possible
as D (4,0,0) is Weyl-equivalent to D (0,0,0).
The relative sign between the two sums in the decompo-
sition (18) shows explicitly that the invariant norm of D (1,1,1)
is indefinite.

Quantum field operator

We can define a free quantum field operator
Y=as+a,g+2a,p, +2b,4,
+afs*+aS gt +2a) pr+23b. g7

— ¢(+) + ¢(—)_ (21)
The invariant commutation relation
W' X)X = —D *xx) (22)

holds if the operators @, @™ in the discrete-momentum basis
fulfill the nonvanishing commutators

J1+J2

3

1 2 3 4 s

FIG. 1. Weight diagram of the dipole ghost. X denotes the weights of
D(1,4,}), dot and circle the weights of “gauge” and “scalar” modes.
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[ag’as+] =1, [as’ag+ ] =1, [an’a:] = + 8>
(23)
[b,,,b,}‘] = —0,,.

An indefinite many-dipole ghosts-space is obtained by act-
ing with the operators a™, b * on a vacuum |0},

a, IO) = agl0> = Gjim |0> = jim |0> = 0' (24)

The a-modes have positive, but the b-modes have nega-
tive probability. A theory with only positive propagating
modes is not conformally invariant. This does not exclude
the possibility that a physical interpretation becomes possi-
ble in theories with a smaller symmetry group.

Therefore, I decompose the dipole ghost with respect to
the (3.2) de Sitter and the Poincaré groups.

3. de SITTER PROPERTIES OF THE DIPOLE GHOST

The weight diagram of the dipole ghost (Fig. 1) can easi-
ly be decomposed in a diagram with respect to SO(2) X SO(3),
the maximal-compact subgroup of the de Sitter group
SO(3.2). Collecting de Sitter representations gives

D (0,0,0)—D (1,4,1}—D (0,0,0)| 5032
= (D(0,0—D (1,1)»>D (0,0)» D (1,000 D (2,0). (25)

The first part is a Gupta—Bleuler triplet with a nonunitary
D (1,1); it is the dipole ghost in (2 + 1)-dimensional Min-
kowski space. The other part describes a massless particle.
The representations in the first part have a 2nd-order Casi-
mir eigenvalue @ = 0, the massless representations have
Q= -2

The field equation of the dipole ghost in (3.2) de Sitter
space is

0(0+2)¢=0. (26)

4. THE DIPOLE GHOST IN MINKOWSKI SPACE

The “pure gauge” of the dipole ghost is the trivial repre-
sentation g = 1. In Minkowski space itis g{y,} = 1, a trivial
representation of the Poincaré group. The “scalar” state s(x)
becomes

S(y,¥o)=nly.| +In(p, + (1 + p?). (27)

y_. is invariant under Poincaré transformations, but not un-
der dilations D and special conformal transformations X, .
The generators of the Lorentz group and translations are
explicitly

M, = _i(ypav—yva,u)’ Pv: _iav’ (28)

J13%
and

D= — i(yvav_y+a+)’

(29)
‘Kv = - i(zyv(yua‘ _y+a+) —yzav)'
Actingon s’(p,,y.) we have
Y08y, y)=1, (30)
while for all other states of the dipole ghost
y+3+¢(yv,y+)=0. (31)
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The field has dimension 0.
Now we can define

sy )=s{y,,y,)—Inly|, (32)
on which, e.g., the dilatation operator acts like Ds
= —i(y,ds—1).

The existence of these two trivial representations g and s
in the dipole ghost complicates the infrared limit in an ex-
pansion in plane waves. Specifically s( y,.} is not amomentum
eigenfunction, but leaks into D (1,4,3).

Except for the limit p, = 0 we get a plane-wave basis of
the dipole ghost by Fourier transformation of the homogen-
eous propagator (17).

In Minkowski coordinates it is

D *xx)=In(y, y" )+ 1+In((y —p) ) (33)
The first term comes from s'( y,, ¥ ) and can be subtracted
as in Eq. (32). Then we have

D *{y,,y,}=D *(xx') —~In{y,y’, )
=1+1In(ly—y)P—(t—t +ie?). (34
The Pauli-Jordan commutation function is
D(y,)=D"(y,) =D (p,)= —elt)f(—y) (35

This expression was first given by Narnhofer and Thirring.’
Using the Fourier transformation of In(x + i0)® we get

feikyD +(y)d4y
={2m)’/k {6 (ko) ko + In|ko|Blko) — ¥8(ko))
X(8'(k + ko) — 8' (ko — k) — 4/
kb(ko)(ko + k)72 — (ko — k) 7%) + 8%(k)
= — (7)Y
(kok )0 (ko)8'(ky — k) + terms at k, = 0. (36)
For k,#0 we have the “plane wave” expansion
D *(p)y, 0 = (2m) ! Je"“" “Ritk 72 — k 3)d k.
(37)

(Invariance under finite Lorentz transformations can be
shown by converting terms of the form ye™ into d/dke™ and
partial integration.)

A possible set of “plane waves” for the dipole ghost at
ko#01is

|k> — k —I/Zei(kt—ky|, (38)
Ik’) — (l-tk —3/2 k —S/Z)ei(kl—ky)'

The mass operator M > = — [ gives
Olk) =0,

le:) =k ——I/Zei(kt—k)') — |k>,

and then [?|k’) = 0.

The states [k) carry a mass O helicity O representation of
the Poincaré group. The states |k’) leak into |k) and have
mass 0, helicity 0 also. Taking this information at k70 to-
gether with the infrared states s and g, we find the Poincaré
representation carried by the dipole ghost:
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T—D (m =0A = 0}—D (m = 0,4 = 0)}>T. (39)

Here T is the trivial representation.

Torepeat: “plane wave” states |k) and k') leak into the
constant solution g. This is an irreducible trivial representa-
tion. To quantize with the Gupta—Bleuler technique, we
need a ““scalar state” s{ y, ). This detailed study of the in-
frared behavior of the dipole ghost was only possible in the
discrete basis.

It is feasible to interpret the invariant subspace
D (m = 0,4 = 0}—Tin Eq. (39) as a gauge freedom, like the
pure gauge in electrodynamics.” I refrain from this possibil-
ity as the dipole ghost would contain “gauge” and ““scalar”
modes only, without any “physical” states.

5. UNITARY THEORY WITH THE DIPOLE GHOST

The “nonunitarity” of higher-order field theories
shows itself group theoretically in the appearance of nonuni-
tary representations. Yet this by itself does not induce a non-
unitary S-matrix, as can be seen in ordinary relativistic elec-
trodynamics. In Gupta-Bleuler quantization, the Poincaré
representation carried by the field potentials is indecompos-
able and thus nonunitary. Nevertheless the resulting .S-ma-
trix is unitary: the propagating modes carry a unitary repre-
sentation.

In a relativistic interacting theory with the dipole ghost,
we could have the Lagrangian

L=y*0Y + 4, (40)
wherej is an external scalar source. The resulting field equa-
tion

m (41)
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propagates only the unitary mass and helicity zero modes if j
is of the form

j=0s. (42)
Then Oy — s is a free ficld,

OOy —s) = 0. (43)
The initial condition (Oy¥ — s)(t = — o) = 0 is true for all

times due to the field equation. So [0y = 0 vanishes wherever
s vanishes, i.e., in empty space the ghost does not propagate.

A similar technique for exorcising a nonunitary ghost
was used in conformal gravity.® As the field has dimension 0,
any polynomial self-interaction requires a dimensional cou-
pling constant.
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A unified gauge theory of the combined gravitational and electromagnetic fields is obtained by
two different procedures using twistors as a starting point for the construction of the appropriate
bundles. One of these formalisms is obtained by relaxing the conditions on the structure of a
twistor bundle theory previously developed by the authors for the Poincaré group as the structure
group. The other formalism is based on a tensor product bundle and can be readily extended to
include structure groups involving direct products of nonabelian groups with the Poincaré group.
The results of the theory are compared with those obtained in projective theories of the
generalized Jordan-Kaluza—Klein type, and some of the essential differences are pointed out.

PACS numbers: 11.15. — q, 04.50. + h, 04.40. + ¢

I. INTRODUCTION

With the growing importance of gauge fields in physics
and the need to unify them with general relativity, theories of
the Kaluza—Klein type' and their generalization to nonabe-
lian gauge fields have acquired renewed interest.

Some of the modern approaches’ to this subject advo-
cate the idea that the extra dimensions which are introduced
in these theories should be regarded as microscopic and phy-
sically real new degrees of freedom, and a suggestive attempt
to combine “spontaneous compactification” and supergra-
vity, based on an 11-dimensional theory, has been presented
by Witten.? An extensive review of the recent work on Ka-
luza—Klein theories has been given by Salam and Strathdee.*

Also, since the differential geometric methods of fiber
bundles provide a very convenient framework for a coordi-
nate-free discussion of gauge theories®~’ several papers have
appeared lately®'° where Kaluza—Klein theories are formu-
lated in that language. All these approaches have the com-
mon feature that they start with a principal Gbundle P, and a
base space which is already the space-time endowed with a
Riemannian metric. Thus, the structural group G is a com-
pact Lie group which is used for gauging the additional inter-
nal degrees of freedom.

It is our belief that a truly unified field theory should
result from the simultaneous gauging of the compact (inter-
nal) and noncompact (external) groups which characterize
the theory. Consequently, a unified theory of gravitation and
other fields should result from the simultaneous gauging of
the Poincaré group and the other symmetry groups in-
volved.

A straightforward attempt to extend the fiber bundle
techniques to theories with noncompact group symmetries,
such as the gauge theory of the Poincaré group, to obtain
gravitational theories has led, however, to some essential dif-
ficulties."!

One procedure to resolve these problems has been pro-
posed by the authors in Ref. 11, where the Poincaré group is

® Supported in part by International Scientific Program Grants, National
Science Foundation OIP75-09783A01 and Consejo Nacional de Ciencia y
Technologia No. 955.

380 J. Math. Phys. 25 (2), February 1984

0022-2488/84/020380-08$02.50

dealt with as an internal gauge group acting on fibers of an
appropriately constructed vector bundle, thus leading to an
unambiguous gauge theory of gravitation. The authors have
also shown'? that twistors provide a very natural framework
for the construction and geometrical interpretation of the
five-dimensional representation space of the Poincaré group
used as a typical fiber in Ref. 11.

The present paper is part of a program intended to com-
bine the twistor language and the fiber bundle techniques for
the purpose of constructing, in a unified manner gauge the-
ories combining both compact (internal) and noncompact
group symmetries. Specifically, we show in this paper that
the twistor bundle formalism developed in Ref. 12 has al-
ready built-in the group U(1) as a normal subgroup and that,
by an adequate relaxation of the conditions on the structure
of the typical fiber of the bundle, unified field theories for
electromagnetism and gravitation are obtained.

We further show how our procedure can be readily gen-
eralized to obtain a natural formalism, in terms of tensor
product bundles, for the construction of other gauge theories
where the structure group is the direct product of a nonabe-
lian internal group with the Poincaré group.

As a continuation of our program, we plan in a future
paper to exhibit a procedure, based on an enlargement of our
twistor spaces, for the obtainment of supergravity and its
coupling to Yang—-Mills type fields.

The presentation is organized as follows:

In Sec. IT we review some of the basic notation and
essential features of the twistor structures and twistor bun-
dles which were amply discussed in Ref. 12 for a construc-
tion of a gauge theory for the Poincaré group from an axiom-
atic, coordinate-free, and component-free point of view. The
purpose of this section is to allow the paper to be as self-
contained as possible without making it unduly long. Re-
course to Secs. 11 and III of Ref. 12 will readily provide any
additional material required for conceptual and notational
clarifications.

In Sec. III we develop a tensor product bundle formal-
ism which permits the construction of a gauge theory for the
structure group G = U(1)X . Contrary to other fiber bun-
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dle theories of the Kaluza-Klein type,®'° the fiber bundle in
our theory is a vector bundle where the typical fiber is con-
structed as a representation space of G, and an element of
this space is given by the tensor product of a twistor with a
basis element of the representation space for U(1).

Some important differences which result from our ap-
proach are that there do not occur the additional Brans—
Dicke scalar fields which are contained in projective theories
of the generalized Jordan-Kaluza—Klein type,'* and also
there do not appear any undesirable cosmological constant
terms.

Further, although the theory admits connections with
nonvanishing torsion, no components of torsion associated
with a fifth dimension are present, and there is no need to
account for new physical effects such as those that have been
predicted in other theories® where these additional compo-
nents appear.

There is one other interesting result of our theory. It
shows that the electromagnetic field does not couple to tor-
sion. This implication is not obvious a priori. In fact, one of
the general prescriptions of gauge theory consists of replac-
ing derivation operators X by covariant derivatives D, in the
Lagrangian. In the case of the Einstein—Cartan theory of
gravitation in the presence of charged fields, as well as other
more general theories with nonzero torsion, this minimal
coupling principle implies that the electromagnetic field ten-
sor, defined as the covariant curl of the electromagnetic po-
tential, contains torsion terms due to the nonsymmetry of
the connection coefficients. As Hehl et al.'* have pointed
out, this definition would lead to breaking of gauge invar-
iance under the usual gauge transformation 4, —A4 ;,

= A, + Jd, ¢, where ¢ is a scalar function, and therefore
conclude that gauge invariance forbids the application of the
minimal coupling procedure to the Maxwell field.

However, if one accepts the general principle that spin-
ning particles both generate and react to torsion,'* then it
would appear reasonable to expect that photons should also
couple to torsion. There have been some attempts'> to make
minimal coupling compatible with local gauge invariance (in
a modified form), but these seem to be in disagreement with
experimental evidence. '®

The results in this paper [see in particular Eqs. (II1.18)-
(I11.22)] provide an alternate approach to resolve the prob-
lem. They show that minimal coupling does in fact apply to
the electromagnetic field, but an additional term containing
torsion occurs in such a way in the expressions where the
electromagnetic field tensor appears that it cancels out ex-
actly the torsion contributions from the nonsymmetric con-
nection coeflicients, leaving only the contribution due to the
standard connection (covariant derivatives expressed only in
terms of Christoffel symbols); thus the gauge invariance of
the electromagnetic field tensor is also preserved.

The formulation presented in Sec. III of a gauge theory
for the group G = U(1) X & via a tensor product bundle is
rather convenient for extension to other gauge theories
where the structure group is a direct product of a nonabelian
internal group with the Poincaré group. However, the twis-
tor formalism developed in Ref. 12 has already built-in in the
presence of U(1). Section IV of this paper is intended to show
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how this presence can be made explicit by an adequate relax-
ation of the conditions on the structure of the typical fibers.

Il. SUMMARY OF THE GAUGE THEORY FOR THE
POINCARE GROUP #

In the formulation'? of a gauge theory for #, we used
the twistor space % =(%,A,l} as a representation space for
2. As part of the structure for %, Ac% "* s a given nor-
malized (i.e., satisfying the requirement
A% A = €,5,5€%7° = 4)) totally antisymmetric twist tensor
(€*#7°), and I€%& C % "?* is a given null element in the space
& of real twist tensors. The element I is simple and invariant
under the action of & and can be identified, therefore, with
the vertex of the null cone at infinity, i.e., I is the so-called
infinity twistor or metric twistor.

An origin element Q€& is any chosen (simple) null ele-
ment satisfying O(®I = 2, where the inner product “(©)”
[signature (+ + ----)] is defined by AOB = } 4 ““¢5,sB "
(in the Penrose component notation) for arbitrary twist ten-
sors A, Be% . The space & =¥%",C & consists of all ele-
ments orthogonal to both I and O.

Starting with the four-dimensional base manifold .#/,
we constructed the bundles % (.#),% "*(.#),% "*(#), and
& (M) with %, % ", % "*, and & as typical fibers. The cross
sections Ael" (4, % "*(#)) and IeI" (# ,& (.# )) are given as
part of the structure of % (.#). To any choice of an origin
twist tensor field Ocl" (.#,& (#)), there corresponds a
unique bundle ¥ (.#) with & as typical fiber."’

A connection D defined on % (.#) satisfies the usual
axioms of a connection given in Egs. (3.2) of Ref. 12, and also
the requirements of Eqs. (3.3)—(3.5) in that paper, which we
repeat here:

X ((u|v)) = (Dxu|v) + (u|Dyv), (IL.1)
DyA =0, (I.2)
DyI=0, (IL.3)

whereu,vel” (#,%(.#)), and {u|v) denotes the nondegener-
ate Hermitian inner product, antilinear in the twistor u and
linear in the twistor v, with signature (+ + — — ). The
group SU(2,2) is defined as the set of unimodular transfor-
mations under which this inner product is invariant.

The connection D on % (.#) gives rise to a connection D
on the bundles % "*(.#),% "*(.#), and & (.#). Equation
(IL.3), together with the compatibility of the covariant deri-
vative with the inner product (O on the fiber # , guarantees
that D, will be compatible with the local action of the Poin-
caré group.

On & (.#), the connection D is projected to give the
connection D” on % (.#):

DYV =1;0DxV)
for VeI (# % (.#)), where the # , ® F, valued field
I, =}A—1180—40sl (IL5)
is the unit tensor field for 7 (#).

We will also need to consider the connection D*, which
is a connection on & (.#) defined as

(IL4)
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D3V =D,V +11ID,O)QOV. (I1.6)
for VeI (# ,% (.#')), and which satisfies

D20 =D,0, (IL7)

DY1=D,I=0, (11.8)

DiV=DYV, (1L.9)

for VeI (# . (.#)). Note that D? also acts as a connection
on the complexification € & (#) = % "*(#) of &(.#). Fur-
thermore, for the purpose of being able to map cross sections
xel (M, T (M ))\>xoJel (M ,F (#))and construct suitable
Lagrangians, the 77, ® ¥, valued field J = D ® O was in-
troduced in Ref. 12 (7, and .77, denote the tangent and
cotagent fibers above g, respectively).

The field J was also used in constructing maps of other
objects defined on .% (.#), such as inner products, connec-
tions, and curvature tensors to give corresponding objects
defined on .7 (_#). With the additional assumption that J(g)
for each ¢ is nonsingular, this map is a bijection of 7, on 7
and a unique # , ® 7, valued field F acting as the inverse
operation to the map x—xoJ was defined.

One of the central problems of Poincaré gauge field the-
ory is the identification of the translation potentials with the
soldering form of the tangent bundle. We deal with this
problem in our theory by first interpreting the origin twist
tensor field as the points at which the fibers are tied to the
base manifold. Noting next that the effect of a translation
acting on O can be envisaged geometrically as a rotation of
the origin twist tensor around the null cone with its arrow
being moved to a different point of the surface
7 = [P,Pe% PGP = 0; IOP =2} (see Fig. | in Ref. 12),
and since # is in one-to-one correspondence with the ele-
ments of Minkowski space-time, we see that our translation
acting on the fibers corresponds to a change of the origin in
Minkowski space. Furthermore, a change in the origin twist
tensor implies a change of the vector space .7 tangentto %

It is important to stress that up to this stage no a priori
assumptions have been made regarding a metric structure
and connection on the tangent bundle. A natural isomor-
phism can be achieved, however, by means of which struc-
tures originating in the fibers can be mapped onto the tan-
gent bundle, by selecting a given origin field and introducing
its covariant gradient J = D ® O as a means of carrying out
in a unique manner the mappings referred to above.

Note, finally, that the selection of an origin twist tensor
field imposes no special restriction on the theory. Any twist
tensor field which serves as an origin field can be trans-
formed by a local Poincaré translation into any of the other
possible choices of an origin field.

The same Poincaré translation will also transform the
connection D on the bundle and the subspace . in such a
way that the theory with the new origin twist tensor field and
new connection is equivalent to the original theory. Indeed,
the tensor field J will also be transformed in such a way that
the new maps with the new theory will induce exactly the
same metric structure and connection on the tangent bundle
as were obtained with the original theory with the original J.

To complete this summary of background material, we
recall thatin Ref. 12 we defined the curvature tensors R, for
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the & (.#) connection D, RZ for the &(.#) connection D?,
and R for the & (.#) connection D . The tensors R, and
R; are 7, 97,8 & ,® & valued, and R is
T.e7,8F,87, valued. They are related by the equa-
tions

R, =R, +1[1—(34)]T; oI, (I1.10)

R, =R, +1T; 3l, (IL11)
where

T, =R,©O0=R; (0 (I1.12)

is 7, @7, ®%, valued, and the symbol (34) denotes the
transposition which exchanges the 3rd and 4th twist-tensor
files.
These curvature tensors all have the same invariant
(R+),=C(13; 24; @)[(Fo)l(Fo)sz? ]

= (R}),=C(13; 24; ®)[ (Fe),(Fo),R} ]
= (R, ),=C(13; 24; @)[(Fo),(Fo).R ]. (IL13)

[The symbol C (13; 24; () denotes contraction of the 1st
with the 3rd and 2nd with the 4th twist-tensor files via the ()
operation, and the notation (Fo), is used to define a linear
map acting to the right on the k th file of a tensor.]

This invariant is used in the construction of a Lagran-
gian from which field equations follow by an action princi-
ple.

Ill. GAUGE THEORY FOR THE GROUP G = U(1)x Z.
FORMULATION VIA TENSOR PRODUCT BUNDLE

We now enlarge the gauge group from & to
G = U(1)x Z. The group U(1) is the set of unitary transfor-
mations {i.e., metric-preserving) on the one-dimensional
complex space % , with a positive-definite inner product
(@ |¢ ), antilinear in O % ,, and linear in g% ,. As a repre-
sentation space for Gweuse 7" =%, @ %.

For the development of the theory we need the bundles
Y (M), ¥ (M), and 7"} #) with the typical fibers
Yy, ad P V=X 98U, 98 = U, @ U, ® U ", te-
spectively.

As a basis choose any ecl” (.#,% ,(.#)) such that
(ele) = 1. Thenanarbitrary element Yel" (.#,7 (.#)) can be
expressed in the form

VY=eou (IIL.1)
with uel” (#,%{.#)). Also, an arbitrary element
Wel (#,7""*}(.#)) can be expressed in the form

W=gsV, (I11.2)
where

g=e®e (IT1.3)
and

Vel (4, % "(A)).

Connections: A connection D' given on % ,(.# ) satisfies
the usual axioms given in Egs. (3.2) of Ref. 12, and also the
requirement

X((0lg))=(Dx0|¢) +(0|D%é)
for 6, gl (A ,% \(M)).

(T11.4)
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Moreover, since % , is one-dimensional, we can define
A=AVl (4,7 ()} by the equation
D ye =i(x0A)e. (IIL.5)

The connections D’ on % ,(.#) and D on % (.#) give
rise to a connection D¢ on 77(.#) satisfying

DS(6su)=(D460)eu+ s (Dyu), (ITL6)

for el (A ,% (M) and vel (A ,%(#)). Fory=eou as
given above, we have

D${ = (ixoAe)®u + ¢ ® (Dyu) = e® (Dyu + ixoAu).
(IIL7)

This connection D¢ on 77(.#) can be used to define a
connection D€on 7" "}_#). For the above given W = go V,
we have

D§W=DS(goV)=(Djg)eV +ge(DyV)
= (2ix°Ag)eV + g& (D4 V)

=g ®(DyV + 2ix°AV).
(IIL.8)

Also, since the connection D' on % ,(.#') gives rise to a
connection D’ on % £?(.#) which satisfies

Dyl6ed)=(Dy0)ed+ 08D i) (ITL9)

for 8, pel" (4 ,% \(#)), we can use D’ on % {*(#) and D*
on & (M) or % "} to define a connection D on
7”& such that it satisfies

DS (PeV)=(D,®)eV + de(DLV)

for Pel (M, U P M) and VET (M, % (M),
Curvatures: For the D connection on 7" "(_#), de-
fine the curvature tensor R as a

CT,0T,8€,88,)=T,87 08U @U,*
valued field by
g®(xy.:R“ (V)

=DS$*DS* —DS*DS* — Dﬁfy NgeV), (IIL11)
where VeI (4 ,% "*(.#)}. A simple calculation gives
g®(xy:R“QV)

=[PxDy—DyDy—Dxyg]eV

(I1L.10)

+ge[(DEDy —D§DY —D%y )V]. (IIL12)
But
(DD —DYDY —D{ , )V=xy:RZQV].
(IT1.13)
Also
(DxDy —DyD% —Dixy 8
=[DxyDy —DyDx —Diyye] ®e
+ee[(DiDy —DyDy —Diyye]
= 2i{X (yoA) — Y(x0A) — [x,y]cAjese.
(I11.14)

If we now make use of the following equations which are
derived from the theory'® of exterior differential forms (the
symbol .# denotes the Lie derivative),
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Ly f=Xf=x°(df),

(ITL15)
d(yoA) + yo(d A A) = ¥ , A,
we get
X(yoA)— Y(x0A) — [x,y]°A = xy’(dAA), (IIL16)

where d A A is the exterior derivative of A.
From (I1I.14) and (I11.16) we then have

DYDY —DYD% —Diyy g = 2ixy.(d A A)g.(IIL17)
Substituting (II1.13) and (III.17) into (I11.12) yields

g (xy:RQV) =g {xy: [R} +2ildAA)e], |OV]},
(IIL.18)

wherel, =1 Aisthe & ® & valued unit tensor. Hence we
can write

RS = R 4 2idAA)eol,. (ITL.19)

We next show that R%? is independent of the choice of
g = e®e. To this end, consider two basis fields e = ¢, and
e = e,, where e, = e'%e, and ¢ is a real scalar field. Corre-
sponding to e = e, and e = e,, respectively, we have
g=g =e;®¢ andg =g, = e, ®e, with g, = e*%g,. Also
we have the corresponding A = A'” and A = A®, where
A? = A" 4 d4. Since d A d¢ = 0, we have
dA A" = d A A?; consequently, R%” is independent of the
basis e.

The electromagnetic field tensor defined in terms of ex-
terior derivatives is independent of torsion. This can be seen
most easily by reexpressing the left-hand member in (IT1.16)
in terms of any connection V, on the tangent bundle. Thus,
we have

X(yoA) — Y(x°A) — [x,y]cA
= (Vxy)°A + yo(VxA) — (VyX)°A — x0(VyA) — [x,y]°A

=xy. T, oA + xy.(VAA). (I11.20)
Combining (III.16) and (I11.20), we get
dANA=VAA+T,0A, (IT1.21)

where T - denotes the torsion tensor in the tangent bundle.
But'®

VAA=VAA—T, oA, (I11.22)

5
where V is the standard connection (i.e., the unique connec-

tion which is symmetric and compatible with the inner pro-
duct in the tangent bundle). Therefore,

dAA=VAA, (IT1.23)
i.e., since the connection coefficients from V are given by the
Christoffel symbols, the electromagnetic field, as appearing
in the curvature tensor in (II1.18}, does not couple to tor-
sion—the torsion term appearing in (II1.20} is cancelled ex-
actly by a term with the opposite sign which occurs in
(II1.21).

Torsion: If O is used as the origin tensor field, the tor-
sion tensor T for D% is
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TS =R%®0 =T, + 2i(dAA)eO, (I11.24)

where T, is the torsion tensor for the connection D.

Lagrangian densities: By appropriate contractions on
R%? as given by (I11.18), we can set up free Lagrangian densi-
ties for the gauge fields (D §) as scalar functionals of R%.

In what follows, we derive a unified Lagrangian density
for gravitation and electromagnetism in the Einstein—-Cartan
formalism, although the theory is more general as it allows
for other types of Lagrangians to be constructed such as
those containing quadratic combinations of the Riemann
and the electromagnetic field tensors.

The gravitational Lagrangian density .7, , expressed in
terms of quantities on the ¥ (.#) bundle, can be rewritten in
terms of R as

£ =C(13; 24; O)[(Fo),(Fo),R ]
= C(13; 24; O)[(Fo),(Fo),R% ]

= C(13; 24; ©)[(Fo),(Fo),R°*]. (ITL.25)
The electromagnetic Lagrangian density . ., , expressed in
terms of quantities on the % (.#) bundle, can be rewritten in
terms of R%* as

L e =[(F0),(Fo),(d A A)IS [(Fo),(Fo),{d A A)]
= %{[(Fo),(Fo[dAA) &S x |3F « |8
{[(Fo)(Fo),[dAA)®SF ]85
= — th{ [(Fo),(Fo),R* ]85, |3

{ [{Fo),(Fo),R* |3 S |.
(IT1.26)

So we now have the total Lagrangian density

&L =7, + L. expressed in terms of the curvature ten-
sor R%” for the connection D%, Thus the gauge theory of
the group G allows a Lagrangian that includes both the gra-
vitational and electromagnetic parts, which are equivalent to
the gravitational and electromagnetic parts of the usual La-
grangian expressed in terms of quantities on the tangent bun-
dle 7(.#).

It should be rather evident from the formalism in this
section, how it can be extended to include structure groups
involving direct products of nonabelian internal groups with
the Poincaré group: One merely replaces the one-dimension-
al representation space for U(1), with basis vector e, by an n-
dimensional representation space for the internal group,
with basis vectors e, [where (i) = 1,2,...,n denote the inter-
nal degrees of freedom], and, instead of Eq. (II1.5) for defin-
ing the gauge field, we substitute

D :\,em = I'XOAU)(," em 5 (11127)

where AY eI’ (4, T (#)), i.e., it is a covariant vector in
the cotangent bundle and a tensor with respect to the inter-
nal degrees of freedom. In addition, an inner product for the
basis vectors has to be introduced which is determined by the
nature of the internal group.
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IV. FORMULATION OF THE GAUGE THEORY
EMPLOYING THE ALREADY BUILT-IN PRESENCE OF
U(1) AS A NORMAL SUBGROUP

In our gauge theory'? for 7, we used the representation
space % =(%,A,I) where A, I were given as part of the
structure preserved by the action of Z. In the gauge theory
that follows, the pair A, I are not part of the invariant struc-
ture because they are not preserved by the action of U(1). We
shall first present some background material, and then de-
scribe the structure for % that is appropriate for the group G
generated by the two normal subgroups U(1) and & . After
that we shall set up the bundles and connections, and use
these in the construction of the gauge theory for G.

A U(1) transformation U, on % for ¢ real is defined as

(IV.1)

for ue% . It also acts on twist tensor spaces % ®” for positive
integer values of 7 as

U,N =e™N
for Ne ®".

On % "2, the dual * V, the inner product VOW, and the
definition of reality all depend on the normalized element
Ae% "*. In the gauge theory for G, the element A will be
variable but remain normalized. We may specify the A de-
pendence by writing “®V and V(©, W, and describe an ele-
ment Ve % "?* as being “A-real” when it satisfies the defini-
tion of reality based on this A. Furthermore,

&=&""C % "? is the space of A-real elements. The ),
operation gives a real inner product in 4.

The following properties for U(1) transformations are

easily verified. For a normalized A,e% "?, let

Usu=e“u

(IV.2)

A, = UA,. (IV.3)
Then for V, We% "2 we have

(UsVIOn,(Us W) = VO, W, (IV.4)

[,V =U,[*V] (IV.5)

But if V is A, -real, then it follows from the right-hand
term in (IV.5) that U, [**'V] = U,V, so
[**U, V)] = U,V,ie,

Vis Ayreal < U,V is A,real (IV.6)
We also have
g™ = U, #N={U,V|Ve®""]}. (Iv.7)

Now, let a normalized element Aie% ** and a null ele-
ment Ioe?a”l'\"’ be assumed as given. Suppose we have also
chosen a null element O,c& " satisfying 0, aJo =2. We
can then define the sets

S = {U,L|¢eR}, (IV.8)

O = {U¢Oo|¢eR}. (IV.9)
Theset.# (the infinity set) is preserved under U(1), and it will
be used as part of the structure of % which is preserved by
the structure group G. To indicate this, we can write
% =(% ,*). The set & (the origin set) is also preserved un-
der U(1) but not under Z.

The infinity element I=I"* for £ is now defined as
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being one of the two elements of .# which is A-real. The
origin element O = O for &' is equivalently defined as
the unique element of & which is A-real and satisfies
0Y®, I = 2. Note also that the maps A—>I'¥ and A—»OW
are double valued.

Furthermore, for each normalized A, the set &
is the subset of & =& consisting of elements orthogonal to
both IY and O"Y. Under the transformation U,, where
A, = U, A,, we have the following properties

=FW

1 = U, 1™, (IV.10)
o =y,0", (IV.11)
FM = U, FM={U,V|VeF "}, (IV.12)

the last one being a consequence of (IV.7).

For notational simplification, we shall from now on
sometimes drop the superscripts or subscripts A, which indi-
cate the dependence on A, when there will be no danger of

confusion.
Using the base manifold .#, we can now set up the

bundles % (4 ), % "}.4), % "*.#) with
U=(%,¥), %"* and % "* as typical fibers. For each nor-
malized cross section Ael™ (.# ,% "*(.#)), we have the corre-
sponding bundle & (.#)=& '*_#) with &=&'* as typical
fiber. We also have the bundles (not vector bundles) 7 (.#)
and Z(.#) with the sets .# and & as typical fibers, respec-
tively, and each fiber .7 &, above ge.# has a structure
isomorphic to .# and ¢ . As was mentioned previously, the
bundle .# (.#) will be taken as part of the structure of the
bundle % (A#).

Note that, for each normalized cross section
A€l (A ,% "*(.#)), we have the corresponding infinity and
origin cross sections I=I'Yel" (.#,&""(_#)) and
O=0Wel" (4,8 ™ (A ))such that I™(g)e.”  foreachge.#,
IV is A-real, O"(g)e& , for each ge.#, OV is A-real, and
OWEOI'Y = 2. Finally, we have the bundle
F(M=F VA with F =F™ as typical fiber.

Connections: Let D€ be a structure preserving connec-
tion on % (#). It satisfies the usual axioms of a connection
given by Egs. (3.2) in Ref. 12, as well as Eq. (II.1). However,
Egq. (I1.2}) is not satisfied, and Eq. (II.3) will be modified in a
way to be specified later.

Theorem IV, 1: For a normalized Ael" (#,% " #)),
there exists A = AWel" (#, 7" (M) such that

DSA = 4i( x0A)A. (IV.13)
Proof: Since % "* is a one-dimensional space, D A
must be proportional to A. Furthermore, the coefficient of A

must be pure imaginary due to the fact the properties as-
sumed for the connection imply that

Re[(D§A):2R] =0. (IV.14)

Note that Eq. (IV.13)is equivalent to saying that, for the
connection D=D" on % (.#) defined as

Dyu=(D¢ (IV.15)

foruel™ (.#,% (.#)), its operation on A as a twist-tensor con-
nection is

A= (DS — 4ix0A)A = 0.

— IXCAju

(IV.16)
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Theorem IV, 2: D=D'" is a connection on
E(M)=FN(4), ie. for VE[ (M, (M) we have
D Vel (M, &\ A)).

Proof: The proof of this theorem follows immediately
from Eq. (IV.16).

Now we write the axiom that replaces Eq. (I1.3);

Axiom: For each normalized Ael" (.#,% "*(.#)) and
corresponding A=AWel" (#,7 " (.#)) defined by Eq.
(IV.13), the field I=I" satisfies

D I=(D ¢ — 2ixoA)I = 0. (IV.17)

It can be shown that if Eq. (IV.17) is true for one nor-
malized A, it is true for all other normalized A.

In the case of the gauge theory'? for &, we were able to
establish a unique procedure for inducing a metric structure
and connection on the tangent bundle via a tensor
J = D& 0. We will show in what follows that a similar ap-
proach is possible for the structure group G. For this purpose
we shall require one more theorem and prove some addi-
tional properties of the newly defined connection D=D'*),

Theorem IV, 3: Given any normalized
Ael (# ,% "*(_#)), and corresponding
A=AYel (#,7"'(.#)) defined by Eq. {(IV.13), the field
O=0" satisfies

DyO=(D§ — 2ix0A)0 = Py, (IV.18)
where P, =P, YelI" (#, % ™(#)) and is linear in X.

Proof: The proof of this theorem follows directly from

Dy(I(00)=Dx2=0, and D4(0O®0)=D,0=0.

Thus the field

J=J"=DWe QW (IV.19)
is.77, ® # , valued, and can be used to map cross sections
xel (M, T (M))—>xoINel (4, 5N A)). If we make the
additional assumption that the map x(g)e.7 , —>Py(g)e.# , is
nonsingular for each ¢, a unique # M ® 7", valued field
F=F" can be constructed which acts as an inverse map

Pyel (4, 5N M) —>PyOF Vel (4, T(M)).
These fields can also be used in the construction of maps of
other objects on .7 (.# )=F " (_#), such as inner products,
connections, and curvature tensors, to give corresponding
objects on .7 (.#).

Note that if for a normalized A el (A, % " #)), we
let

A, =U,A,, (IV.20)
where ¢el" (.# ,R(.#)), then it follows from Eq. (IV.13) that
AM = AN | g, (IV.21)

where d¢ is the gradient of ¢. From this we can derive the
result

DYh=U,D{U; ', (IV.22)
DYN=U,DP'U N, (IV.23)

forwel (#,%(#)) and NeI" (4 ,% ®"(.#)). Egs. (IV.20)}-
(IV.23) show how the vector potential and connections, par-
ametrized by different A’s, are related by U(1) transforma-
tions.
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It follows, in particular, from (IV.23) that if the equa-
tions

DWA =0, (IV.24)
DWTN =0, (IV.25)
DWON =P, W, (IV.26)

are satisfied for A = A, then the same equations with
A = A, are also satisfied, along with the following results

Py’ = U, P}, (IV.27)
1= U, 1, (IV.28)
o = u,0". (IV.29)

Consequently, the structure preserving conditions [Egs.
(IV.24) and (IV.25)] on the fiber bundle are gauge-indepen-
dent. Note also that, by virtue of (IV.26), the J l((])EJ'A‘)(q)
maps .7, onto # ;A‘) for each g, and the J,(g)=J""?(¢) maps
J , onto & 'qAZ) for each g, but inner products are preserved
under the U, map from % LA" to F 5;\2) (provided “(,,” and
“(©a,” are used for the inner product in ;A‘) and .# LAZ),
respectively). Thus, the inner product in %Y is also inde-
pendent of gauge. Furthermore, the J,(g) will induce an in-

ner product in 7", from & LA‘) and the J,(g) will also induce

an inner product in .7, from 9“{;\ ? However, these two
induced inner products in .7, can be shown to be identical
and completely equivalent theories ensue from the different
choices of gauge.

We have now reached a stage at which the basic con-
stituents of our gauge theory for the structure group G have
been made formally isomorphic to those used in the pre-
viously developed theory for 7, and which have been sum-
marized in Sec. II. The procedure for constructing curva-
tures and Lagrangians can be matched step by step with the
one followed there, recalling only that the proper connection
to use here is D=D™. Thus, the connection D=D'* on
& (M=% '"™(#) can be projected [cf. Eqgs. (I1.4) and (I1.5)]
to give a connection D =D"" on ¥ (#)=F (. #). This
connection is also a connection on € .5 (A =% .F M(.4).
In analogy to what we did in Sec. II [Eqgs. (IL.6)—(I1.9)], a
connection D*=D?" on & (.#)=%"*(#) and on
C &\ M) = U ") is additionally defined.

The curvature tensors that can be constructed with
these different connections are the same as those given in
Sec. II with the proviso that here they are A-dependent.
Moreover, these curvature tensors all have the same scalar
invariant which can be shown to be independent of A and is
given by (I1.13).

Specifically, making use of (IV.15) in the definition of
the curvature tensor R'?' given by

xy. RPOV
= (D (,{'\)D (\I(\) - D(\I("D(fr\) -D ([1,\\),\' ])V
for Vel (4 ,% "*(#)), yields

(IV.30)
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xy. ROV =(DED§ —DSD§ — Dy )V
= xy:RAQOV + 2i( X (yoA)
— Y(xcA) — [x,y]°A}V
— xy:RYOV + 2ixy: (d A AV, (IV.31)

after resorting to (II1.15). (Note that R has a dependence on
A, but only because the product (), was used in its defini-
tion). This last result implies that

RC=R® 4+ 2idAA)o1,. (IV.32)
Ina simi‘lar way we can obtain the curvature tensor
R =R¢" for the D" =D¢“" connection on
CF (MN=F F ™ #) defined by
D7V =DV 4 2ix0AV
for VeI' (#,¢ 5 (.#)), and also the curvature tensor

R =R°“¥ for the D’ =D%“¥ ¢onnection on
C EN M=% "*.#) defined by

DV = D%V 4 2ix0AV

for Vel (.#,% "*.#)). They are given by
R%” =R, +2i[dAA)sL,,

and
R =R’ +2idAA)sL,. (IV.34)

The curvature tensor given by Eq. (IV.34) is identical to that
obtained in our tensor product bundle formalism described
in Sec. III [cf. Egs. (I11.18)]. Hence the Lagrangian densities
constructed there will apply equally well here and are fur-
thermore independent of the choice of A.

As a final remark note that the scalar element of volume
dp = dp™ on .# given in Eq. (4.17) of Ref. 12 now appears,
by definition, to depend on A. In fact, however, the expres-
sion is actually independent of A. Therefore, since the La-
grangian densities and the scalar element of volume are inde-
pendent of A, the Lagrangian is also independent of A and
both the formalisms here and in Sec. III lead to the same
theory.

(IV.33)
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We analyze the problem of an A-nucleon system interacting through harmonic oscillator forces in
terms of variables which separate collective and noncollective aspects of the Hamiltonian. To
study the symmetry group of the collective Hamiltonian in the limit when A is very large, we carry
out a group contraction on the dynamical group generators for the system, which permits the
identification of this group as U(6) A SU(3). In addition, an explicit realization for the symmetry
group generators is given in terms of Bohr- and Mottelson-like variables.

PACS numbers: 24.90. + d, 02.20. + b, 11.30.Jw

1. INTRODUCTION

One of the most important unsolved problems in nu-
clear structure physics is that of extracting from the micro-
scopic A-nucleon system a collective Hamiltonian and the
subsequent determination of its eigenstates. There are many
different approaches in the literature' all striving towards
this goal. In several recent works,””” the collective Hamil-
tonian is projected out from the 4-body Hamiltonian by re-
stricting it to a definite irreducible representation (irrep} of
the orthogonal group O(n) associated tothe n =4 — 1 Ja-
cobi vectors. In particular, Vanagas® has considered the sca-
lar irrep of O(n), where the collective states are those invar-
iant under transformations of this group. Studying the
problem of an 4-nucleon system interacting through har-
monic oscillator forces, Deenen and Quesne’® were able to
prove that the symmetry group associated to the O(n)-scalar
collective Hamiltonian is a U{6) group, which is very sngges-
tive, given the phenomenological success of the interacting
boson model. However, one should be aware that the O(n)-
scalar collective Hamiltonian is, in general, inconsistent
with the Pauli principle,? and a more realistic problem is that
of projecting the many-nucleon problem onto a definite irrep
of O(n) which is consistent with the latter. This problem is
more difficult to tackle, and in this paper we consider an 4-
nucleon system interacting through harmonic-oscillator
forces in the case where 4> 1, following closely the results of
a previous publication,® where the present authors and their
collaborators constructed a complete set of basis states for
this limiting situation. In this work, we turn our attention to
the study of the symmetry group associated to the oscillator
collective Hamiltonian for 43 1, where the latter is defined
consistently with the Pauli principle.

The translationally invariant Hamiltonian for a system
of 4 particles interacting through harmonic oscillator forces
is given by

H:ii i(P?mLX.i), (1.1

2 s=1i=1
where X, are the Jacobi coordinates, P, their corresponding
momenta, and we chose units in which #, the mass of the
nucleon, and an appropriate frequency are 1.
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The group theoretical structure of Hamiltonian (1.1)
has been studied thoroughly and we know that a possible

decomposition of the symmetry group U(3n) of the Hamil-

tonian (1.1) is the following:

Ul(n) D Oln) > S,

X (wl’wZaw:&) {f}
uU(3) D SuU(3) > /3 D@2
[hls hzy h}] (/i, !L] L M
(1.2)

Underneath each group we write down the quantum
numbers characterizing its irreps. For U(3) we have the par-
tition [A,, A, h,], where b, + h, + h; = N is the total num-
ber of quanta; A = A, — h,, u = h, — h; characterize the ir-
rep of SU(3) and L,M the irreps of Z(3) and Z(2),
respectively. The U(n) irrep is the same as that of O(3), due to
the complementarity of these groups, while that of O(n) can
have also at most three rows>® (w,,w,,w;). The symmetric
group S, , , is characterized by the partition

{1 = {SisfoseosSurSui1 } Of n+ 1, while its row is speci-
fied by the Yamanouchi symbol r = (7, , | ,7,,,..-,72,74). Thus,
the eigenstates of H can be denoted by®

| N (Ap) gLM2 (w,w,ws) 6 ff}("»’ (L.3)

where £2 corresponds to the set of indices required to distin-
guish between repeated irreps (w,,w,,ws) of O(n) appearing in
a given irrep [h,, h,, ;] of U(n); & plays the same role for
repeated irreps { /] of S, , | appearing in a given irrep
(w,,Ww,,w5) of O(n), and g is an extra index to classify repeated
irreps of Z(3) in a given one of SU(3).

The collective part of the Hamiltonian (1.1) is obtained
by projecting on a definite irrep (w,w,w;) of O(n), which is
determined by constructing the set of “compact states,” i.e.,
the lowest possible energy states that satisfy the restrictions
imposed by the Pauli principle.® Following Sabaliauskas,”
one can take a linear combination of Slater determinants
corresponding to these compactly filled states with Z pro-
tons and A — Z neutrons such that it is characterized by the
number of quanta N and the irrep (4,,, 4,,,) corresponding to
the maximal eigenvalue of the quadratic Casimir operator of
the SU(3) group. Furthermore, this state is also character-
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ized'® by the chain of groups (1.2), and by construction it is
also characterized by a definite irrep (w,w,ws) of O(n), which
coincides with the irrep [4,, 4, ;] of U(n). This fact is a con-
sequence of the compact filling of the oscillator levels. Thus,
when we apply the O{n) scalar quadratic functions of the

annihilation operators &, = (1/y2)(X;; + iP,) of the form

By= S &6, (1.4)

s=1
to the ground state, we get zero, as we cannot obtain states
with a lower number of quanta that satisfy the Pauli princi-
ple. It is then straightforward to find the relations®

w, = (N +24,, +p,)/3, (1.5a)
=(N+p, —4,/3, (1.5b)
=(N—-2u, —4,)/3. (1.5¢)

By using the tables® for (4,,, i,,, ) of Sabaliauskas, it is an
easy matter to find the irrep (w,w,w,) of O(n) consistent with
the Pauli principle.

To analyze the group theoretical structure of this many-
body system in the case when the number of particles is very
large we proceed as follows. In the next section, we introduce
the Zickendraht-Dzublik transformation'' and then turn
our attention to the construction of the generators of the
symplectic group in six dimensions, Sp(6) in these coordi-
nates.

In Sec. 3 we make the projection of the generators of
Sp(6) onto a definite irrep (w,,w,,ws) of O(n).

We analyze in Sec. 4 the collective Hamiltonian in the
limit where A4 is very large, by means of a contraction of the
generators introduced in the previous section and discuss the
symmetry group associated with the problem for this limit-
ing situation.

Finally, in the last section we summarize our results
and make some concluding remarks.

2. GENERATOR OF THE Sp(6) GROUP AND THE
ZICKENDRAHT-DZUBLIK TRANSFORMATION

We now turn our attention to the Sp(6) group, which
plays the role of a dynamical group for the collective excita-
tions of an 4-nucleon system interacting through harmonic
oscillator forces. This is due to the complementarity of the
groups Sp(6}), O(n), and Sp(6#) in the sense that for the irredu-
cible representations [} *"] [4 *" ~'3] of Sp(6n), which con-
tain all totally symmetric irreps of the symmetry group
U(3n), the irreps of O(n) and Sp(6) are in one-to-one corre-
spondence.'? Thus, the Sp(6) generators will connect differ-
ent states of the system without changing the O(n) irrep, i.e.,
without leaving the collective subspace of the many-body
space.

The generators of Sp{6} can be written in terms of the
J acobi coordinates and momenta as®

v =3z { q; + T;] + lL,j} {2.1a)
B,* =4{4;,—T; —né; — zS,J} (2.1b)
=1{q, — T +n5 +zSu} (2.1¢)
where the operators §,;, S,], T,J, and L 4 are given by
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n

4= 3 XXy 0j=123 (2.2a)

- i (X, P, + X, P,), (2.2b)
T, = z P,, (2.2¢)
L= z (X, P, — X, P,). (2.2d)

s=1

The operators {2.2d) are the components of the total
angular momentum in the frame of reference fixed in space.
We now introduce the Zickendraht-Dzublik (ZD) transfor-
mation, by means of which the separation of the space in
collective and noncollective parts is more naturally dis-
cussed, as well as the large 4 limit that we analyze in Sec. 4.

The ZD transformation'’ is given by

= S pD ke ) 2.3)

k=1

where D i?, D, + ks are the fundamental matrix represen-
tations of the #(3) and O(n) groups, respectively. The 9,,
i = 1,2,3 are the standard Euler angles and it would seem
that there are n(n — 1)/2 angles ¢. However, since in (2.3)
one only needs the last three rows of the representations, it is
possible to define the angles so that only 34 — 9 ¢ ’sappearin
them.’

The physical meaning of the p,, with & = 1,2,3, can be
understood through the definition of the inertia tensor'?

Iij = pz(s;j - 95, 59] = 1y233 (248')
with

- Sa (2.40)

Using the coordinate transformation (2.3} and the orth-
ogonal properties of the matrices || D (o )|| we see that

121l =1l D@
p*—pi O 0
x| 0 p—p; O | D @),
0 0 P’ —pi
(2.5)

where ~ indicates the transpose. It is clear from (2.5) that
the ;s define the orientation of an intrinsic or “body fixed”
frame in which the principal moments of inertia become

P35 +p3,p1 +p3, andp] +p3.
X P,T, andL in

The expressions for g, 27_, X, P, i
terms of the variablesp, ’s, #,’s, and ¢ *s were given in Appen-
dix A of Ref. 8. We note, in particular, in the expression for
Eq. (A.21), the appearance of the operator

n—3 3 1
DiDy Z Zu, (2.6)
t=1kk =1 PrPr
where .# +. are the generators of the orthogonal group O(n)
in the frame of reference “fixed in the body”.® These opera-
tors have been studied by Rowe* and by Buck and Bieden-
harn.® In particular, the operators .%; R

u,

n—ln» nn— 21
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Zr n_ 2. — 1 have been identified by these authors as the com-
ponents of a vortex spin for the system.

Through the commutation relations between the P 28
the last expression can be written in the more convenient
form

L n—3
S DLDY ( s 7z
k=1 t=1
+i(n—3) i DD, o
2 ke pepe
5. D@Dy,
kAKT=1 204 Pr:
n—3 A A
<32 2+ 2 2], 27

t=1

+

withk=n—3+kandx’' =n—-3+4+k".

The factor in the parentheses in the first term can be
related to the Casimir operators in the chain of groups
O(n) D Ofn — 1) D -+ D 0Of3) D Of2) by means of the
relations

n—3

S 22, =Gn—2—G'n—3) (2.8a)

=

"f Fr =G —1)—Gn—2— ¥7 (28b)

<,

"23 Fr G -G =)~ FP— F2, (2.80)
wher;uwle have defined

Zi=1 23" €rin Ly km ks (2.9)

k'k" =1

with €, . - being the antisymmetric tensor and where
G'(n=13,,_, £ isthe Casimir operator'® of an orthog-
onal group O(r). If the group Ofr) is characterized by the
partition [4,,4,,....4,,,,] its eigenvalue is given by
A A +n—2s).7

In similar form, the factor in the brackets in the last
term of (2.7) can be written as

n—3
z (fn—ltf’ 2r+jn72r :1—-1,1)

t=1

=% [G'(n—2) 1], (2.10a)
Ej(fn, ZoLv 2 L F)

=—i— (G'n—1), L+ 7, &+ .71 .7, (2.100)
guf A Lo, T

= — % [G'(n—2), 73], (2.10c)

where [4, B ] denotes the commutator between 4 and B. For-
mulas (2.6)~(2.10) are very useful when projecting the Sp(6)
generators onto a definite irrep of O(n).

To simplify the contraction procedure that we carry out
in Sec. 4, we modify slightly the operators {2.2) through the
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transformation

04,6, 6-'L,6, 678,06, 6-'T,0, (2.11a)
where

O =(ppps) "2 (2.11b)

which corresponds to a change of volume element.
Considering (2.11) together with Eqgs. (2.8) and (2.10),
we have

2 pRDEDy:, (2.12a)
k=1
A 3 A
L,= DED} %4, (2.12b)
kA1 =
£-'8,0 =iln—13)8,
a
—2i D
kzl k;pk apk
3 2 2‘
i Pi + Pk [Dt‘D;:"
2 2 J
kak' =2 Pr — Pr
+ DD Lo + M
kak’ =2 pk ,Dk
x[DEDE, +DEDR] Zie (2.12¢)
withk=n—-3+k,c’'=n—3+4+5k’,and
i 3 13 L
o lTijﬁzkglpkkaj
2 —
x[- &, A4 6)]
Ipi 4p%
DD (p R )
— ’ — p,.
e pt—pt \ I " o

.« DxD; J 3\s
—1! z _k“*""‘(Pk_““Pk )Ll:k’
KTk P —Pi !

< DaDy E] d\ 2
—i > zk I;j (pk' + Px )f:«'

k2k: P — P dpx dpy
A A D DE,
+ Ry + 05 + —
T G (pR =i Pk —pR)
k %k’
X[px Liw +pe Lowllpe Liz +px L]
D D%,
+i x
Rekwr (PF —pie )(pk —pi)
X[ pi: Lz +px Pr Zul, (2.12d)
where
~ DpPD?D
R, =—""Y(G'n—2)—G'(n—3)
2
Pi
Dis . : on
—22(G'n—1)—-G'n—2)— 2%
P:
DJ':D‘L3 A A
+ 222G - G — ) = LR = L5,
P3
(2.12€)
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and

N D;D +D3 Dy

2ip, p3
X[G'ln—1)Z — &1 G'(n—1)
oA A A -~ 1
+iL; L+ Ly L]+ —
2ip, p,

X(D3 D3+ D3 DY)
1

X(G'(n—2) P, — ZG'n—2) — —
2ip, p,

XDy Dy +Di DY)
X(G'(n—2) 25 — Z; G'(n—2). (2.12f)

By means of Egs. {2.1) and (2.12), it is straightforward to
construct the generators of Sp(6) in terms of the ZD coordi-
nates.

In the next section, we carry out the projection of the
collective part of these operators and construct a matrix re-
presentation for them.

3. THE COLLECTIVE GENERATORS OF Sp(6)

It is clear from Eq. (1.2) that the Hamiltonian (1.1) is
invariant under both the £ (3) and O(n) orthogonal groups.
Thus, to find explicitly the eigenstates (1.30) it is convenient
to pass from the coordinates X ; to the six collective variables
Pr> Txs k= 1,2,3 and the 3n — 6 angular coordinates ¢, as
indicated in (2.3). This is achieved using Egs. (2.12a) and
(2.12¢), i.e.,

_ 1 ¢ ~ A
H,=70 lHﬁ—-E-; T, 0 +4,}
1 3 3 A—4)4—6
=—[Z(— IR »
2 = dpi 4p
I
k>%=1 pi — pi-
J
w, w, w, 0 0
T T, 0 0 w,
& 0 0 .
0 0 o
0

This particular form of the Gel’fand—Zetlin states is due
to the coordinate transformation (2.3), where the matrix re-

presentation D ;" of O(n) only depends on the last three
rows.23

The matrices G'(r) are well known, '* while the .#°} were

given in Ref. 8, Eqs. (4.4)(4.8). The latter were taken from
the analysis of Pang and Hecht'® and the phase convention
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d d
X(Pk = P )

apy Py
3 2 2
P+ Pi
+pt+ 2 2 12
k>k=1 (P — pi)
~ ~ 3 i
X[L2 +Z2]+4 B -
5 =1 (P — pie)

XLi Zi + =16l — 1)~ G'(n —3)]

1
+i2 [G'(n—1)=G'(n—2)— Z7]
P2

+ =[G —

P3

G'in—1)— 27— 3”;2]] .
(3.1)
Due to the structure of (3.1), we can propose the follow-
ing form for its eigenstates:

V=3 S pipaps 8 DInls fin (9),

T T2, 61
(3.2)

where D 1%, . are theirreps of O(n) and £ is still
to be determined and contains the collective structure of the
system.

The only operators appearing in (}\.1) that are related
with the O(n) group are the generators ¥, k = 1,2,3 of (2.9)
and the Casimir operator G'(r), r = n,n — l,n — 2,n — 3,
both of them in the frame of reference “‘fixed in the body”.®
Thus, the collective wave function £ 2
tion

Ho E ", (3.3)

where H_, is the matrlx representation of the operator H,,
given by (3.1)in which Z; x» G '(r) are replaced by their matri-
ces L;, G'(r) with respect to the Gel’fand states'* of O(n),

satisfies the equa-

f(wxwzws)

1) ws
Ty )

&

(3.4)

selected so that it agrees with standard results when we re-
strict ourselves to a group O(3). Thus the collective genera-
tors of Sp(6), B;" , B;, and C; are obtained by replacing in
¢ 'B}I,07'B;0,and ﬁ 'C; & the operators fk,
G'(r) by their matrlces L,, G'(».

For later convenience, we introduce these generators in
the form of an irreducible tensor of £(3), i.e.,
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B =73 (115 im) B}, (3.5)
iJj
where (114j| Im) is a mixed coefficient related to the standard
spherical Clebsch~Gordan coefficient by means of the rela-
tion
(1] Im) =¥ (lulv|Im) A4,,4,,,
“wv

(3.6)

where |4, || are the unitary matrices that connect the
spherical and Cartesian bases.'® For B,,, and C,,, we have
relations analogous to {3.5).

4. CONTRACTION PROCEDURE OF THE COLLECTIVE
Sp(6) GENERATORS

Up to this point we have been concerned with the con-
struction of the generators of the Sp(6) group associated with
the collective excitations of the 4-nucleon problem interact-
ing through harmonic oscillator forces. We now turn our
attention to the large 4 limit for these operators and first of
all discuss the form of the collective Hamiltonian H_,, in
this limit. To this end, it is convenient to introduce an addi-
tional transformation® that relates the collective degrees of
freedom g, , k = 1,2,3, with those appearing in phenomeno-
logical collective models of the nuclei.'”

We first express the p,., K = 1,2,3, in terms of three new
variables p,b,c through'®

pi = L1p°{1 + 2b cos(c — 2wk /3)3. 4.1)

In order for the coordinate transformation (2.3) to be
bijective one needs the additional conditions'®
0<p,<p,<p>< . This translates into restrictions for b and ¢
that limit them to the lined triangle in Fig. 1, where
x = b cos ¢,y = b sin ¢. The restrictions on ¢, i.e., 0<c<7/3
are the same as those of 7 in the Bohr-Mottelson model'’
but, as we see from Fig. 1, b can not exceed 1 so its range is
not that of B8, which is in the interval 0< A< « . Furthermore,
instead of p we prefer to introduce a variable & with the range

]

..
N
\\
w|3

FIG: L. Th? variables b, ¢ appearing in Egs. {4.1) and (4.2} are restricted to
the lined triangle, where the coordinates are given by x = b cos ¢ and
y=bsinc.

— o0 <@< 0. This transformation is defined by®

Y=g, (4.23)

1+2B%/0% = (1 — b1 —3b% 4 2b3 cos 3¢) !,
(4.2b)

& =20 In(p/0), (4.2¢)

where the parameter 0” = w, + w, + w, + 3 — 4)is relat-
ed to the energy of the ground state of the system, and from
its construction,® one can easily prove that to highest order
inA, 0" ~A4*"?so A>1 implies o> 1.
Using Eqs. (4.1) and (4.2), we get for o> 1 that
pr =0’ /3+ [(2/3)@ + 3 B cosly — 27k /3) ]
+@°/3 + (B>/3) cos 3y cosly — 2mk /3)

+ (4/3\2JaB cosly — 2mk /3) + £(1/0),  (4.3)
where & (1/0) denotes terms of order 1/¢ or smaller.

In order to analyze the matrix representation 7z + in this limit, one needs to write down the corresponding expressions'”
as a power series in the parameter 0. As shown in Ref. 8, one then compares the 0— oo result with the matrix elements of the
generators G, i, j = 1,2,3 of a U(3) group, in the unitary Gel’fand and Zetlin basis'* U(3) D U(2) D U(1),

w, W Ws w, w, ws
i 7 Gy T Ty
[ &
and finds the correspondence
21— i€ — o) =14,

g — o

jé — Gy — Cy3) =L,

o —

fﬁ — {C), —Cy) =14,

ag—

=, (4.4)

(4.5a)
(4.5b)

(4.5¢)

> . . -
where we denote by boldface letters L], L;, the matrices associated with the operators .7, L, in their respective bases (3.4),

(4.4). Thus, for arbitrary 4 one has the expansion®
L, =L, +(@;/0%), k=123.
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By means of Eqs. (4.3) and (4.6), the collective Hamiltonian H_; can be expressed in a power series of ¢

&> —
Heon =( TiFE az)l
_*_(_Li “i___l—_asu-l3
B* dB B  B*sin3y dy

3
1
+
,;::1 4B % sin*(y — 27k /3)

J2+ O(1/0),

where I = |6, 8., || is the unit matrix and
Lt 7212 [}

=L{1+L,, k=123 (4.8)

The Hamiltonian (4.7) has the structure of a one-dimen-
sional oscillator in the variable @ plus a five-dimensional
oscillator of the Bohr-Mottelson type. However, instead of
the usual L & angular momentum components of the Bohr—
Mottelson equation, one encounters a “total angular mo-
mentum” J; composed of the latter and an intrinsic operator
L; that behaves as an additional spin for the system.

Clearly H,,, has not, in general, a U(6) symmetry
group, but has an additional degeneracy brought about by
the presence of L] .*°

For the unphysical situation where (w,w,w;) = (0,0,0)
for the O{n)irrep, i.e., for the scalar representation, or for the
case of closed shells, (w,,w,,w,) = (w,w,w), L, would play no
role, and indeed a U(6) symmetry group would appear.
These cases would correspond effectively to J, = L ;Tin
(4.8), and thus to no additional degeneracy for the states.
Moreover, for these cases, U(6) is the symmetry group of
H_,, for any 4, as shown by several authors.>?!?

For the case of an arbitrary O(n) irrep, it remains to
determine the symmetry group associated to this additional
degeneracy. To investigate this point, in the remainder of
this section, we analyze the behavior of the collective Sp(6)
generators (3.5) in the same large A situation and then search
for the hidden symmetry group for the Hamiltonian (4.7). To

]

3 2)
- I
3 +5

(4.7)

!

this end, we expand the generators (3.5) in a power series in
the parameter ¢ and then proceed to the limiting situation,
which, in effect, is a contraction procedure.”

Using the representation matrix B}, together with Egs.
(4.3) and (4.6), we find

_ aJ
B =./2 — ——)]I+ﬂa° 4.9a
b =Fo( - T+ )1+ (4.99)
and
B, = yio || Funn o — 2 +5)
aB
+F r—a29)L 9 |14 L
B dy 228
JI J/
X[(ng_Dz—Zm)*S_f_l(D% _DZ lm)_—
$3 By
2 2 Ji 0
—Dim +D° ) —| +(0), (4.9b)
1
where s, = sin(y — 27k /3), k = 1,2,3, DL . is the rotation

matrix of three dimensions in spherical components, and

F2m (7/’ 191' )ECOS VD(Z)m

To obtain the B”” with / = 0,2 we just evaluate the adjoint of B}, with / = 0,2, Egs. (4.9a) and (4.9b).

Similarly, for the C,,, we get
Coo = — (1/43) * 1 — (1/{3)
Ci= —(IAR)L, 1,

H., + 2(1/0),

+ L sin (D3, +D% ,,). (4.9¢)
V2

(4.10a)

(4.10b)

where L,,, m = 1,0, — 1 are the spherical components of the orbital angular momentum fixed in space, which is independent
of o. Finally, the corresponding expression for the quadrupole generators C,,, is given by

1 d 1 4 1 &
Con = = —Fnl=20)[ 2 - L2~ ——/32]
’ 6 B> B 3ﬁ B oy
Bl =2 = 72,004 o LR SUSEZ N iy
B 6‘B87/ B 87/ B dy da
- 3
— = F, .)[éra ~@ -
3 B 2282 sin 3y 37’
J12 3 JrZ
—=viPom 23.2 ! D(Z)MZT’(—_
B’ sin’y 8652 K< sin®(y — 27k /3)
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+ (D3, —D*,,) [ _coty 1 4 V2 3 \/gsin(y—27r/3)]
243 ? g B B2 dy Bsiny da B sin 3y
PG =D ) g, [ _cofly—4m/3) 4 1 9 V2 9. ﬁsiny]
23 ? B B ' B? Iy  PBsinly—4n/3) d@ = B’sin3y
23 B ap B dy Bsinly — 27/3) da B?%sin 3y
(ng +D272m) [ Jéz _ Jiz
1632 sin’(y — 41/3) sin?(y — 27/3)
sin(y —4n/3) > 2 )3 sin y 2 2 i
— D%, —D JiJ D;. —D J5J
2BZSin3’}/ ( 1m flm) 1 3+ 2[ﬁ281n37/( 2m v2m) 2Y
Sin('}/ — 277-/3) 2 2 R
__‘?‘“2'.—(D|m +D" )39 + Sy, + (1/0), (4.10c¢)
2i3“ sin 3y
where F,,,{y, &,} is given by Eq. {4.9c} and the operator S,,, is given by
Som = lim Y (115|2m) Q;
o — ’vJ
= —iD}, + DL ,)Cps + Ci) + (D3, — D, )Gy + Cps) + (D3, — D75, (Cyy + Ty (4.11)
with Q; and C;; defined in (2.12f) and (4.4).
These collective generators satisfy the Sp(6) commutation relations
(B, By ] = =421+ 120"+ 1) Y WL A m Im| Am'" + m) Cor toms (4.12a)
A
[Ci> By, ] =VRIF 120"+ 1) Y 2W('115;4 WWK'm'Im| Am' + m) B, , .., {4.12b)
A (even)
[Crm s B ] = (= 1R+ 121+ 1) Z WL A VU 'm'Im| Am' + m)B, ., (4.12¢)
A (even)
[CrmsCi] = — NI+ D2 S [(— W= 211w AN 'm'iml Am’ +m) Cy s (4.124d)
A

where (/'m'Im| Ap) is a standard Clebsch-Gordan coefficient and W (/'/11; A 1) is a Racah coefficient.

If we now define the operators

b, = lim ( — ig—B,:“,,), 1=0,2 (4.13a)
a— o 20
and
L o?
C,, = lim|C,, +—6,1|, /=0,1,2, (4.13b)
o —> o ﬁ

we notice that their explicit form is given by the highest-
order term in formulas (4.3), (4.9), and (4.10). Again, b'™
=lim, _, _( — (V3/20) B™) is just the adjoint of b;},.

As pointed out above, the limiting procedure specified
by definitions (4.12) amounts to a contraction mechanism?'
of the collective Sp(6) generators. By means of Egs. {4.12), it
is now a straightforward exercise to compute the commuta-
tor algebra associated to the generators b;%,, b, C,,., which
is readily identified with that of a W(6) A U(3) Lie algebra,
where A indicates a semidirect product, W(6) is a Weyl
group®* in six dimensions, and U(3) is a unitary group in
three dimensions.
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Thus, we conclude that W(6) A U(3) constitutes the
dynamical group for the 4% 1 collective Hamiltonian (4.5).
In fact, one can verify directly that

H.y =23 b b+ 6L (4.14)
Lm

What is the symmetry group of H,, ? It is quite obvious
from the form (4.14) for H_,,, that the set of operators

gim=bt b L1'=0,2 {4.15)
commute with it and generate a U(6) group. In regards to the

U(3) group generated by the C,,,,, = 0,1,2, Eq. {4.13b), we
readily find

>

1
NE]
and thus C,, is already contained in the U(6) algebra generat-
ed by the operators (4.15). The SU(3) subalgebra generated

by C,,., C,,, is not, however, contained in the U{6) algebra,
as we proceed to show. We first construct the tensor opera-

1 -
C()O: - chl] = - E{zLEmcgim +6]I}a

(4.16)
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tors that generate the SU(3) subgroup of U(6), which we de-
note by SU*(3). As is well known,?” these are given by

Tim =6 Y (2ulm|2u’) bl b,
ny'

Qom =3 [bs Xb, 15 + Vi(bgo by, + ol bo). (4.18)

Substituting the explicit expressions forb,}, andb,,, and
comparing with (4.10b) and (4.10c), we find, after a straight-
forward but lengthy calculation, the relations

Clm = _(1/\/5) {Tlm +D6m L;
+ (/2D = D) L

— (D, + D1l Ls ), (4.19)

C,, = —Q,, + 5., (4.20)
where S,,, was defined in (4.11). Thus, it is clear that the two
groups SU(3) and SU*(3) are distinct. Furthermore, since
[Heon; Cin ] = — V3 [Co0» Ci ] =0,1=1,2,SU(3)is an
additional symmetry group for H_, .

We now compute the commutators between the U(6)
and SU(3) generators using the results of the contraction pro-
cedure:

[€im Cin]
|- e
X S (= 1f+ 1] W 1154 1)
X(;m,l "—m"|Am —m") €

=W+ DR+ ) Y (=1 + 1]

X WAL ml'm'| Am +m'y €4 .

(4.17)

(4.21)
We conclude that the hidden symmetry group for H_ is the

semidirect product group
G =U(6) A SU(3). (4.22)
From (4.19) and (4.20), it is clear that for the particular
case where one takes either the scalar or the closed-shell
irrep of O(4 — 1), the SU(3) and SU*(3) groups are identical,
since the C;;, i #; of (4.4) vanish and, consequently, the oper-
ators L, and S,,, also disappear. Thus, for these cases,
G = U(6), in accordance with previous investigations.*?!*?

5. CONCLUSIONS

In this paper we have analyzed the group-theoretical
structure for a many-body system interacting through har-
monic oscillator forces and projected its collective Hamil-
tonian, following the ideas proposed in recent investiga-
tions.>” We focused our attention on the large A limit for this
system and, in particular, on the accidental degeneracy pres-
ent in the collective Hamiltonian, Eq. (4.7), for this case. By
carrying out a group contraction on the collective dynamical
group generators, we were able to conclude that the symme-
try group responsible for this degeneracy is the semidirect
product group U(6) A SU(3).

This analysis differs from previous ones by Deenen and
Quesne’ and Kramer®” in that we consider the collective sub-
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space defined by an arbitrary O(n) irrep and also in that our
realization for the Sp(6) generators is in terms of the geome-
trically appealing ZD coordinates, in contrast with the
Barut-Hilbert space® and Bargman-Hilbert*? space realiza-
tions, respectively, by these authors. The explicit construc-
tion of these generators, when projected to a definite O(n)
irrep as given by Egs. (4.9) and (4.10), permits, in the large 4
limit, a straightforward identification of the symmetry
group for the collective Hamiltonian and, as a bonus, an
explicit realization for the U(6) and SU(3) generators.

As anext step, it would be important to study this prob-
lem in the case of arbitrary 4, or to start by considering a
small number of particles in the same spirit as the work of
Chacén et al.” for the O(n) scalar collective Hamiltonian.
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The ballooning spectrum of rotating plasmas
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Ballooning modes are shown to be part of the spectrum by using a “‘singular sequence” of
localized modes. We show that the modes arise from Alfven and slow magnetosonic waves
propagating along rays confined inside the plasma. Different ballooning modes are seen,
depending on the particular rotating frame of observation, indicating that there are accumulation
points of eigenvalues. The effect of rigidly rotating flow is seen to be destabilizing due to an analog
of the Rayleigh-Taylor instability associated with density gradients in the presence of a
centrifugal force. Flow shear also modifies the stability criterion. A certain component of the flow

shear will eliminate the ballooning modes.

PACS numbers: 52.30. + r, 52.35.Bj, 52.55.Gb, 02.30.Jr

. INTRODUCTION

Ballooning instabilities,* driven by the pressure gradi-
ent of a confined plasma in the presence of convex magnetic
field lines, are believed to limit the plasma beta—the ratio of
plasma pressure to magnetic pressure—to just a few percent
in toroidal devices. In axisymmetric toroids they are thought
to provide a means of determining the behavior of the unsta-
ble spectrum corresponding to individual mode numbers m
as m tends towards infinity. In deriving the beta limits, it is
generally assumed that the underlying equilibrium state con-
tains no mass flow. This, however, is not always the case. In
particular, strong flows of Mach number close to unity can
be generated after heating the plasma by neutral beam injec-
tion. One of the purposes of this work is to investigate the
effect of equilibrium state flows on the ballooning stability.
Indeed, we find in Sec. IV that flow effects will be of the same
order of magnitude as magnetic curvature effects.

A second aim of this article is to clarify the physical
origins and the mathematical understanding of the balloon-
ing modes. We will show that they arise from the presence of
waves in the plasma which propagate along rays which never
intersect the boundary, namely, the Alfven and slow magne-
tosonic waves. This phenomenon gives rise to modes local-
ized about such rays, and the question of their stability in-
volves a system of ordinary differential equations along these
rays, whose relevant spectral properties can be determined
from the spectrum of just one second-order ordinary differ-
ential equation. The ballooning equations are derived using
not the common eikonal representation'™ but rather by a
mathematically and algebraically more appealing device of
constructing so-called singular sequences,’ as was done for
shearless magnetic fields.® Moreover, as the rays we will con-
sider are ergodic, no recourse needs to be made to the so-
called ballooning representation or to the Fourier transform
technique, which involve as yet unresolved issues relating to
the convergence of the series present in such representations
and their connection with the physical eigenfunction.* Our
approach, however, is not as natural for the investigation of
“finite 1 corrections” to the ballooning modes which were
treated for static equilibria,>* and this work is restricted to
studying the infinitely localized modes only.
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The main case we consider is an axisymmetric plasma
equilibrium in a toroidal configuration, where the plasma
rotates both in the toroidal and poloidal directions. Because
of the symmetry, it is possible to get the spectrum of modes
by Fourier analyzing the system and to consider modes
which behave like exp[i(m8 — wt )], where @ is the ignorable
toroidal angle. The spectrum of the entire system, including
the ballooning modes, is simply the closure of the union of
the spectra with finite m-number, and, in particular, the bal-
looning modes in the axisymmetric case are limit points of
eigenvalues w(m) as m— oo . This observation leads to the
remarkable result that the ballooning spectrum depends on
the coordinate frame which an observer uses. An observer
rotating with angular frequency {2, in the 6 direction mea-
sures a toroidal angle 8 = @ — £2,¢ and sees the phase
ml — wt as mO@' — (w — ml)t, that is, sees the wave fre-
quency as @’ = @ — mf2,. Clearly, finite accumulation
points of w(m) will go to infinity under this transformation of
the spectrum, but new accumulation points may appear. It
follows that, in principle, ballooning mode studies should be
carried out in all possible rotating frames in order to obtain a
better stability criterion. We will see that the most dangerous
ballooning modes are observed in a frame rotating with the
flow frequency itself, if this frequency is constant.

This work is structured as follows. In the next section
we collect some known results on the equilibrium state of
rotating plasmas”® and on the nonlinear eigenvalue equa-
tion,” which determines its linear stability. In Sec. III we
derive the ballooning mode equation in the frame of the mov-
ing plasma, which is close in form to the static case. We also
derive a sufficient condition for the stability of these modes.
Section IV discusses the effect of the flow on the stability of
these modes, using a large aspect ratio asymptotic expan-
sion. In Sec. V we present a detailed derivation of the bal-
looning modes arising from a single Alfven wave ray, and in
Sec. VI a briefer calculation is presented for the slow wave
ray.

Il. EQUILIBRIUM AND STABILITY EQUATIONS

Consider a plasma confined in a perfectly conducting
axisymmetric torus and obeying the ideal magnetohydro-
dynamics (MHD) equations
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pu, + puVu 4 Vp = JXB,

pe +div(pu) =0,

B, + curl(BXxu) =0, (1)
S, +uwVS=0,

divB=0, J=curlB, p=Sp?,

where B, u, p, p are the magnetic field and the plasma veloc-
ity, pressure, and density, respectively. S is a function of the
specific entropy and the last equation is an equation of state,
where y is the ratio of the specific heats. Appropriate bound-
ary conditions for this configuration are u'n = B-n = O at the
wall, where n is the normal to the boundary.

Using cylindrical coordinates (7,0,z) and denoting by
¥(r,z) the poloidal magnetic flux function such that
B = V¢ X VO + B,0, it is known’? that an equilibrium flow
field must be within ¢-surfaces,

u = (1/p)® (¥)B + r2 ()9, 2)

where @ and {2 are some given function of 1. Equation (2)
states that u is parallel to B up to a rigid rotation of each
individual y-surface. We will consider the case of a sheared
magnetic field, where almost every y-surface is covered er-
godically by a single field line. In this case if @ #0 then
B-VS =0, or S = S (¢). Thus the presence of a poloidal flow
requires the temperature T, T =p/p, to vary on y-surfaces.
Experimentally, however, one expects to see isothermal flux
surfaces, T'= T (), with the poloidal flow damped out due to
the magnetic pumping effect in the torus.'® An equilibrium
state may be obtained after specifying two more arbitrary
functions of ¢ and then solving a second-order partial differ-
ential equation for ¥(r.z}, which is known to be elliptic®!' if
®2/p <3, where

B =yp/(vp + B?). (3)

An interesting and useful property of the equilibrium state®
is that the vector B — ®u, and its curl, or instead
J — @ curl u, must be in the ¥-surface, generalizing the well-
known result for the static equilibrium state. We remark that
if one observes the system from a rotating coordinate frame
rotating in the toroidal direction with angular frequency £2,,
system (1) remains unchanged except that u has to be re-
placed by it = u — nf2,0 and the right-hand side of the mo-
mentum equation has to be replaced by JXB + prf2 3¢
+ 2 pf2, X Z, corresponding to the additional centrifugal
and Coriolis forces. Equation (2) remains unchanged except
that 2—2 =02 — 12,

Linear stability of the equilibrium state is found by lin-
earizing Eq. (1) about it. Introducing the Lagrangian dis-
placement vector® § via

u, =§ +0-VE — &Vi, 4)
where the subscript 1 indicates perturbed Eulerian quanti-

ties and quantities without subscripts are equilibrium quan-
tities, and then expressing

B, = VX(§XB),

pr= — V(p§),
b= —E&Vp— Ve,
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one gets from the momentum equation the second-order
equation’

Pk, +24E + FE=0. (5)
A is an anti-Hermitian operator,
AE = pieVE + pRoEXE, (6)

and Fis a Hermitian operator under the boundary condition
gn = Oand the usual inner product (§,m) = f&n* d °x, given
by
FE=V(ypV-€ + £&Vp — B-VX(EXB))
+ B-V(VX(EXB)) + (VX(EXB))-VB
+ Ve p&irVii — patid-VE) — 2 p(i-VE — E-Via) X 2
+ 2V pBliixXz — V( pE)2 5. (7
In discussing stability, we follow Ref. 8 and single out
the perturbed total pressure p. = p, + B*B,. Defining
b = B-VE — p&-V(B/p),
(8)
s=(p/S)E'VS,
one gets for the perturbed quantities

= p S““B'b+ »-
P 7/p+B2( p+)

B, = [1-

1
BB|b+ —— (s+p.)B, (9
——e 7p+B2( p.)B, (9)
p. =B«BVE—EVB) — &Vp — (1p + BY) div §,

where [ is the identity operator. It will be seen useful to
express

F(§)=F(§)+Gp.), (10)
where G operates on § only through p. and Finvolves deriva-

tives only of the form B-V and #i-V, but no derivatives across
y-surfaces. One has®

G [p.(§)1,§)=J L

vp + B?

lp-7d>x, (11)

(Feg = f[ - ’% b — (£V0B|? + OB, Bt
= TIS (E-VS)E*Vp) + bXEM® curlu — J)

— (VD )BXE*curl u] d’x, (12)

where (12) is correct only if £2 () = {2, is constant. (The
expression for this special case will suffice for our purposes).
The caret over B, indicates that p. should be set to zero in
the definition of B, in (9). We have defined the positive defi-
nite operators

o=1+-LBB, o'=1_ !

(72 p+B
Notice that in (12) it was more convenient to use u rather
than the velocity in the rotating frame i.
Finally, we recall® that, for a solution of (5) behaving
like exp( — iwt ) in time, the equation becomes quadraticin w.
Taking the inner product with § and solving for e, one gets
that (F §,€)>0 guarantees a real w, or astable mode. Using the

BB.  (13)

2

E. Hameiri and P. Laurence 397



positivity of G in (11), we have from (10) a sufficient condi-
tion for stability® (F'&,£)>0 for all admissible &.

ll. THE BALLOONING MODE EQUATION

As described in the Introduction, ballooning modes are
limit points of eigenvalues (at least in the axisymmetric case),
but might not be eigenvalues themselves. Fortunately, it is
not necessary to follow the accumulating eigenvalues in or-
der to find them. For this purpose we use the device of con-
structing ‘“‘singular sequences” due to Hermann Weyl. The
technique which was used previously for systems with closed
magnetic lines®'? is based on the following observation:

Let (L — iw)g = 0 be an eigenvalue equation for an op-
erator L in some Banach space with norm || ||. The spectrum
of L is the set of iw such that (L — iw)~ ' does not exist as a
bounded operator. If we can find a normalized sequence
{E.1, IE.|l =1, and (L — iw) ,—0 as n— oo, then i must
be in the spectrum of L. To prove this, assume /e is not in the
spectrum and let f, = (L — iw)§,, then f,—0 by assump-
tion. Thus §, = (L — iw) ™ 'f,—0 since (L — iw) ™ is bound-
ed, contradicting the assumption that ||, || = 1. If in addi-
tion (in a Hilbert space) §, can be chosen so that the
projection of €, on any fixed vector 1 tends to zero as n— oo
(one then says §, tends weakly to zero), Weyl’s criterion
ensures us that iw is in the so-called essential spectrum which
means it is not an isolated eigenvalue of finite multiplicity.’

In the MHD case, the sequence §, will be a sequence of
functions localized about some ray of one of the MHD
waves. We defer the general description of the rays to Sec. V
and deal here with the most unstable special case, closest to
the static case, where all the Alfven and slow wave rays coin-
cide with magnetic field lines. To clarify our treatment, we
return to Eq. (1), write Vp — JXB as V(p + B?/2) — B-VB
and notice'? that all spatial derivatives appear as B+V and
u-V, except terms involving div u and V(p + B?/2). This also
holds for the linearized system. Moreover, if £2 (¢) in (2) is
actually a constant, we can pick a rotating frame with
2, = {2 (Y)sothat theii-V derivatives will also be proportion-
al to B-V. In this case, every flux surface generated by mag-
netic field lines is a six times characteristic surface of the
system: it is possible to find six equations containing only
B-V derivatives, and only two equations will involve deriva-
tives across the surface. Symbolically, the linearized system
can be written as

Au + Bv =0,
(14)

iv +Cu+Dv=0,
24
where y is a label for the family of flux surfaces under consi-
deration and 4, B, C, D are differential operators, depending
linearly on . The 2-vector v contains p. and the component
of u, normal to the y surface—these are the two quantities to
be differentiated across the surface—while the 6-vector u

contains all the other variables. The reader may find it help-
ful to consult Ref. 13 for an explicit form of Eq. (14). The

operator A4 is special in that all derivativesin it appear as B-V.

To see more clearly what the y surfaces are, we recall

that it is possible to introduce a poloidal angle ¢, increasing
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by 27 as we move on a toroidal y-surface the short way
around the torus, such that B = V¢ X Vf, f=0 — g¢, where
q(¢) is the “safety factor” [g(1,) being an irrational number
implies that the surface ¥ = 1, is covered by any given field
line on it ergodically, while a rational ¢ means that all field
lines on that surface close on themselves]. Any function y (i,
0 — q¢ ) has the property B-Vy = 0, thus y = const. gener-
ates flux surfaces, which, however, may self-intersect for
large 8 and ¢.

We now construct a test function in a tube of field lines
about a particular ergodic line defined by ¢ = ¢, ¥y = yo.
The tube will self-intersect. However, if its initial width is
very small, its length before self-intersection will be very
large, and will tend to infinity as the initial width tends to
zero. More precise details on such a construction for the
static case can be found in Ref. 12. A more detailed descrip-
tion will also be given for the case considered in Sec. V. The
test function has the form

oA Mg e

e T €kg‘( : :"% )gz( = >g3( Ll(e) )U"(” +0lel

where k = 1 — nand O <n < 1/2, € is a continuous param-
eter that tends to zero (we will take € = 1/m), / is a coordi-
nate along the field line, and L (€) is a length of the tube before
its self-intersection. All the functions £;, g; in (15) are chosen
to vanish when their argument lies outside the interval { — 1,
1), so that the test function is strongly localized in the y
direction and more weakly localized in the ¢ direction. In
substituting (15) into (14) one has to expand the coefficients
about ¥, v, (assuming they are sufficiently smooth), so that,
for example,

A= A0(¢0:X0’1’%) + f"( @ )A'

+ 6< X —Xo >A2 + higher order.
€

It is possible'? to choose vy{! ) in terms of #y(!), relations
between f; and g; and order € terms, such that, to leading
order, Eq. (14) reads

aJ
A()(¢O’XO,I’;97>”0 =0. (16)

If (16} is satisfied, the remaining terms are generally of order
€%, with some a > 0. Thus, (15) constitutes a singular se-
quence as €é—0.

Some remarks should be made about the boundary con-
ditions of Eq. (16) which will presently be written out more
explicitly. The leftover O(e”) terms depend on u, and the
derivative d(f5u,)/dl, or B-V(f;u,), and in order to preserve
the ordering, it must remain bounded in norm as €—0. This
means that ||B-V(f;u,)l| . /|/#0|| . remains bounded, where the
subscript L [or L (€)] indicates that u, has to be set to zero for
|1 |>L (€). (We prefer not to specify the norm used at this
point.) This boundedness requirement is the “‘boundary con-
dition” for solution of (16) along the ergodic field line of
infinite length. Notice that if %, decreases exponentially as
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|/ |— 0, the boundary condition will be satisfied.

The previous treatment was correct for £2 (¢) const. If 2
is not constant, we can still move to a rotating frame with
2, = £2 (), so that only the flow on the surface ¥ = 1, will
be seen to be parallel to B. In that case the operator A4 also
contains (2 — £2,)6-V derivative, or (2 — £2,) 3 /86. If
02 — 02,~ (¢ — ¢,)* as Y—1f,, this term when applied to the
test functions (15) will be of order €™ ~ '. It will be asymptoti-
cally small if a > 1/n. Since n can be any number smaller
than 1/2, we find that @ > 2 leaves the previous result un-
changed. To conclude, df2 /dy = 0 at ¥, is not sufficient for
the ballooning mode to exist for this surface, but a sufficient-
ly flat £2 will still give rise to a ballooning mode at #,. The
argument above did not necessarily provide the weakest re-
quirement on the behavior of £2 () near ¥, for the ballooning
mode to exist, but we do not pursue this question here.

The explicit form of (16) can be obtained, according to
(14), by ignoring the two equations containing the y deriva-
tives and then setting the two special variables in v to zero in
the other equations. In particular, the component of the mo-
mentum equations along Vy is ignored, and p. as well as
u,-Vy are set to zero. In terms of the Lagrangian variable &, if
E'Vy =0, Eq. (4) guarantees that also u,"Vy = 0. We then
ignore the normal component of (5) and set p.—0. This
amounts to setting G in (10} to zero, replacing F by F. The
ballooning equation is then

P{ — pw’® — 2ivdA + F}PE =0, (17)

where P is a projection operator annihilating the component
along Vy. Equation (17) is in fact one-dimensional, an ordi-
nary differential equation, involving derivatives along a par-
ticular field line. Instead of a volume integral, one may use
the relation d *x = dy dy d! /B (B = |B|), and change the
measure of integration to d/ /B. Namely, the one-dimension-
al inner product

&m) = f g2 (18)

can be used, and PAP and PEP have the same symmetry
properties as A and F.

As described in §ec. 11, a sufficient condition for bal-
looning stability is { PFP £,£) >0 for all admissible §. Further
simplification of this criterion is achieved by expressing § as

where N is the normal to B within the characteristic flux
surface with normal Vy. We normalize N such that
N-V¢ = 1. The normalization is possible unless N-Vy = 0,
or y is a y-surface, a simple case leading to the so-called
Alfven continuous spectrum which is generally stable and
which was treated in Ref. 8. The sufficient condition for bal-
looning stability is the positivity of expression (12), which is
correct if (d /dy)(2 (¥,) = O, evaluated for £ in (19).

Before writing down this expression explicitly, it is
helpful to note that in (9)

B, =0 '[b+(§VS)B/yS ]
and that b(N) is parallel to B,

399 J. Math. Phys., Vol. 25, No. 2, February 1984

b(N) =aB, a= —2k'N + (1/B*N-JXB + (1/p)N-Vp,
(20)

where KAiS the curvature vector of the magnetic field,
k = é&-Ve with & = B/|B|. Equation (20) is proved using the
identity b(N) = curl(NxB) + div ( pN)B/p. For every mag-
netic flux function f, B-Vf= 0, we have
V£b(N) = div[V/ X (BXN)] = div[(N-Vf)B]. Taking the two
independent fluxes f = y (with N-Vy = 0) and /= ¢ (with
N:Vy = 1), this expression vanishes. Thus, b(N) is parallel to
B.

Denote B+V by a prime so that, say, X ' = B-V.X. Expres-
sion (12) can be written as®

(FPE, PE) = Q.. +2Q.. + Q... 1)
where for the special case of @ (¢)=0 (purely toroidal flow),

0.~ [y lpw(z  SZY _Z5¥
ZzZ B

b4

S ¥S
Q.. = fil p~'BX N-[zs' (pwYu — 2B-VB)
XZ B ;/S
2 L]
-z ( Bouwlu 2B-VB)],
P

N-VS 1?

dl( 212 2[ 2[
o = | —[IN?X"?+X* 8B +
Q fB N “ S

— aJXBN— %ﬂ’l ])

These expressions are essentially the same as those given in
Ref. 8 for the simpler configuration of field-reversed mir-
rors. We write them symbolically as

(FPE, PE) = %’ (0,27 + 20,ZZ" + a,Z >

+2b,XZ' + 2b,XZ + ¢, X" + c,X?).
(22)
Notice that @, > 0 and the quadratic expression @, in Z and
Z' is positive definite if p'S ' <0, which we assume. This con-

dition is satisfied for the most common equilibria,® where a
relation

p=pl¥p) (23)
holds and S =pp ~ ¥. We consider two cases.

Case I: S = S(¢)

WhenS =S5 (¢),S' =0,anda, = a, = b, =0.Itisthen
possible to rewrite (22) after completing the square as
- 2
68y = [L]az'+ 2x)’
B a,
b 2
+e, X2+ (02 — a—‘ )X2], (24)
1
which one wishes to minimize say over all admissible func-
tionsX (/),Z{/)on( — oo, ), where foradmissibility weneed
to define a norm, like requiring that the function as well as its
derivatives be square integrable on L %( — o0, %0).
The minimum of (24) with respect to Z can formally be
accomplishedbytakingZ’' = — b X /a, (assuming |B|andp
bounded away from zero). However, Z may then be an inad-
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missible function, not vanishing at + «. We can overcome
this difficulty, however, by introducing a sequence of admis-
sible function Z (/) with the property that ||Z ; + (b,/a,)X ||
can be made arbitrarily small as # tends to infinity. For this
we let

z,=—£(+) i’—X g (25)

where fx) is a smooth function such that

L X<
f(x)_{o, (> 1.

It can easily be checked that since X (/) tends to zero at
infinity, Z, yields the desired approximation. Thus, in order
for (FE,E) to be nonnegative, we must have

bZ
Jil [c,X’Z + (c2 - =L )X2]>o. (26)
B a,

After a significant amount of algebra, it may be shown that
the explicit form of the above expression can be simplified to
the following when @ (¢) = 0 and (d /d¥){2 (1},) = O:

(FEE) = H[NVX'Z — XZ[z(K-N)(quB) + 2 2(N-Vr)

(2) (2 ~oal]d

where p = p(¢, p) as in (23).

The positiveness is the sufficient condition for balloon-
ing stability. The dependence of this expression on the flow
will be analyzed via a high aspect ratio expansion in Sec. I'V.

Case Il. S£S(v)

In this case additional terms are present in (24). It is still
possible to simplify the stability criterion if we minimize
with respect to Z and Z ' now thought of as independent
functions, as in Ref. 8. This, of course, yields an inherently
somewhat more pessimistic sufficient condition for stability
than the previous case, but it is possible to show that in this
case one again recovers (27) so that (27) is once again suffi-
cient for stability.

IV. LARGE ASPECT RATIO EXPANSION

In this section we try to gain some physical understand-
ing of the effect of the flow on ballooning stability. To sim-
plify matters, we use a common analytical device for toroidal
systems, a large aspect ratio asymptotic expansion. The as-
pect ratio is defined as the ratio of the major radius of the
torus, R, to a typical poloidal plasma radius a. We assume
e=a/R «1. The usual “high beta” tokamak ordering is
B, = O(l) = p,B, = O{¢) = p, where B, is the poloidal pro-
jection of B, B, = B — B,0. We take a = O (1) so that
r = O (e ") in the plasma while d /Jr and 3 /Jz are O (1).

To order the flow velocity, we recall that ellipticity of
the equilibrium equation is guaranteed if @ */p < 8. Hence
we take @ = O (€!/?). Also, the fastest toroidal flow is ob-
served experimentally to be at most at Mach one speed (in
the ISX-B experiment'?). This means pr°2*/(yp)<1. We
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then take 2 = O (¢*/?). The equilibrium momentum equation
is affected by the flow through the term pu-Vu, which, how-
ever, is of order €, while the pressure term Vpis O (). Thus to
order ¢ the equilibrium state is unchanged by the presence of
flow. In particular, to leading order p = ep (¢/).

Returning to the ballooning equation {17}, in order to
have an instability we will see shortly that B-V§ is O (€) and
also w = O (€). The middle term in (17} is

— 2iw[® B-VE — pf2,£x 2] and is of order €/ as compared
to the pe’ term which is O (€”). Thus it is negligible. To lead-
ing order for such modes, Eq. (17) reduces to

PEPE = po, (28)

which is a self-adjoint eigenvalue equation. Thus, for @ of
order € the ballooning modes are stable if and only if
(PFPE.E) >0 for all §. Notice, however, that near marginal
stability »? may get so small as to be of the same size as the
neglected middle term of {17) and a modification of the ex-
pansion will be required.
For simplicity we treat the purely toroidal flow case

@ =0, andalsoassume.S = S (1). Equation{27)isthe applica-
ble criterion for stability. The coefficient of X 2, the only pos-
sible cause for instability, is of order €. To see this note that
lk|~1/r = O\(¢). Writing dp/d¢¥ — N-J X B

= N+(Vp — IXB) — (dp/3p)N-Vp so only (dp/dp)N-Vp
needs to be kept to leading order, we have to O (€?)

(FeE) = f {XN]” = X2[2(-N)(N-Vp)

— (NVoN-Y (1°2%) ]} 5‘3 : (29)

From here it is immediately seen that for unstable modes,
with (FE,E) <0, X' = O (€) at most, for otherwise it would
have dominated the negative terms. Likewise, from the pre-
vious section we get for the worst case Z' = O (¢), or

B-VE = O (€) as claimed before. Notice also that

lo]* = — (FEE)/{ pE,E), so w = O (e) as assumed.

The last term in (29} expresses the effect of the flow on
the ballooning stability. It is seen to be simply the Rayleigh—
Taylor effect of destabilization when a heavy fluid is on top
of a light fluid in a gravity field. Here the gravity is replaced
by the centrifugal force V({2 */2), always pointing out radi-
ally in the t direction. Since to leading order p = p(¢}), p is
also a function of ¢. For a confined plasma p() decreases
towards the boundary; thus Vp points into the plasma. The
flow term thus tends to destabilize on the outer side of the
torus, and, to stabilize in the inner side, similar to the effect
of the curvature k. In fact, if S is a global constant, thep
defining k = k — pV(r242 )/ (4yp), expression (29) with k ap-
pears as if there was no flow. The result indicates further
destabilization of the plasma in the presence of rigidly rotat-
ing flow. Note, however, that if {2 #const. the ballooning
modes may disappear all together so the effect of the flow on
stability is not clear cut. We would like to stress that the
effect of the flow appears not as a modification of the pres-
sure due to the centrifugal force—this is a higher order ef-
fect—but as a modification of the curvature.

We did not discuss the case of @ #0. One expects, how-
ever, to see in (29) additional terms expressing the effect of
flow shear—the Kelvin—-Helmholtz instability.
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V.LOCALIZATION FOR THE ALFVEN RAY

As mentioned in the Introduction, the essential spec-
trum of the Lundquist equations when linearized around
static equilibria in toroidal systems is intimately connected
with the propagation of waves along rays of the equili-
brium’s characteristic surfaces. Here we wish to make these
statements more precise and then show that a stable part of
the essential spectrum, when there is flow in the equilibrium,
still can be characterized in this way.

As is well known,"'® the Lundquist equations (1) consti-
tute a symmetric hyperbolic system. This means that they
can be expressed in the form

LU=U, + T4, ai U+ BU=0,

where the 4, are 8 X 8 symmetric, real matrices, and Uis an
8-vector. See Ref. 15 for a precise description of the equa-
tions. Thus the characteristic determinant'® (we will use || ||
to denote determinant) is

¢11 - ZAi¢x,-

where ¢ = const. is a characteristic surface and subscripts of
¢ denoteits derivatives. [ is the identity matrix and the equa-
tion has eight real but not necessarily distinct roots ¢,, for
any choice of ¢, .

=0, (30)

If, however, we consider only the spatial part of L, the
characteristic determinant

ZAi¢xi

isa polynomial ofdegree 8in¢; =4, ,i = 1,2,3in2CR >, of
the form

Q(§1’§2’§3) =0.

The latter may not have only real roots. If such real
roots remain, however, they correspond to a hyperbolic part
of the spatial part of L and to characteristic surfaces which
are generated by rays.

Specifically in the case of the Lundquist equations, it
can be shown that'®

|| S48 || = @96 Pvs f — ave Piwvs
— V8 (VS — Ve ) =0, 32

| 1)

with
Ac B o dleS)
Vp %
cs,f — {az +A 2 ? [(02 +A 2)2 _ GZ(A'V¢ )2] 1/2} 1/2’
where ¢, (resp. ¢,) corresponds to taking the minus sign
(resp., the plus sign) in the above expression.

The families of characteristic surfaces associated with
this determinant are given by

uVéd =0, uVe+ AVe=0,
wVé +¢,|Vp | =0.
Denoting a particular family by Q; (x,V¢ ) = 0, we recall

wVé +¢|Vé| =0,

401 J. Math. Phys., Vol. 25, No. 2, February 1984

that the surfaces ¢ = const. are generated by the rays solving
the bicharacteristic equations

b _ 9
7{ - a¢Xi Qj(x’v¢ )’

(33)
dg,

. _ 4,
o, SV

where ¢ is a parameter along the ray.
In the following we will consider in particular the Alf-
ven family generated by

uV¢ + AV =0. (34)

Moreover, without loss of generality, we will restrict
ourselves to the family

uVé + AVg =0.

We will see that an ordinary first-order differential
equation along this ray determines points in the essential
spectrum of L.

We now digress to introduce the relevant concepts
about the equilibrium configuration which we will make use
of subsequently.

It can be shown, as in the static case, that there exist
“irrational” surfaces such that the trajectories of the field

u + B/\/p on these surfaces never close and are in fact ergo-
dic on these surfaces. We will indicate the proof of this fact
later. We will need to construct a coordinate ¢ such that

(u+B/Jp)Vg =0, (36)

in a neighborhood of the ergodic field line. Actually we de-
fine ¢ in a sequence of tubular neighborhoods 7', of the field
line. Where T, has the properties that the radius of T,,, AT, ),
tends to zero as # tends towards infinity and the length of
T,, L(T,), tends to infinity as # tends towards infinity. Also
the tube T, does not self-intersect. Thus 7', is collapsing as it
is growing onto the particular field line. That such a se-
quence of tubes 7, indeed exists can be shown by contradic-
tion if one uses the continuous dependence of ordinary dif-
ferential equations on their initial data, making use of the
continuous differentiability of u + B/y/p. We note that if
one uses Hamada coordinates'® (,6,a) to represent the mag-
netic field in the form

(35)

B =VyXV[0—q¥)], (37)
where
VY X VO-Va =1

and makes use of (2), one obtains the most general local solu-
tion of (36) in the form

¢(¢,—q(¢)a— :n(w[% + %p]‘ld&”)’m)

where ¢ (1,y ) is determined by the distribution of V¢ on an
initial surface containing one point on the ergodic field line.
The vector field

(@/p £ 1/Vp)"(u + B/Vp)
is divergence-free, so that since we know that

(39)
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(u+ B/p)Vy =0, (40)

with closed surfaces 1, we can apply known methods*® to
deduce the existence of a multivalued function y and a func-
tion §(¢) such that

(@ (W)/p + 1/p)~ '(u + B/p)
= V¢ XVy = V¢yX(V6 — §(¥)Va), (41)

where if 27G(t),) is irrational the trajectory of u + B/\/p is
ergodic on ¥ = ,. We assume throughout then that the lo-
calization takes place on such an ergodic trajectory. With
these preliminaries out of the way, we now return to the
spectral problem.

In the following we give an argument to demonstrate
that a part of the essential spectrum, namely, the so-called
ballooning spectrum of static equilibria in ideal MHD, is
also present when there is flow in the equilibrium. We will
show this as mentioned above by using singular sequences
due to Weyl. For the sake of definiteness, but not because
this is the only possible set up, we will work in a Hilbert space
L*{2)and let

D (L ) = U - (ulyquu3rBlaB2yB3,Sy p)E[L 2('0 )]Sv

i X

where L is the operator associated with the spatial part of the
Lundquist equations.

Itcanbeshown!” that L 4 A for sufficiently large A isa
closed operator. We now show how to construct the singular
sequences mentioned above by localizing around an Alfven
surface on a particular ray lying in this surface. Unlike the
case discussed in Sec. I1I this localization will lead only to
stable spectrum.

The key fact that we will use in the course of the local-
ization process is that if we go to the coordinate (d,y,s)
[where s is determined by dx/ds = u + B/y/p] the symmet-
ric characteristic matrix 2,4, , which is the coefficient of
the d /d¢ derivatives in LU, has precisely one left null vector
corresponding to the Alfven wave root (34).

This left-right eigenvector can be shown to be

bu —a pcBXn

6B _ (B-n)BXn . (43)
p 0

58S 0

We now factor our system (L — iw)U in the following
way (denoting left eigenvectors by /;, j = 1,...,8):

L(L — i)U
(L — io)U = : . (44)

(L — io)U

We introduce the notation U = U — P, (U), where P,,
is the projector onto the space spanned by 7,.

We now take note of the fact that in the first equation in
(44), I,(L — A )U may be reexpressed in the form
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WL — AU = 17( % , ¢;x,y)P,, (U) + y( % , ix ;¢,x,s)f],
(45)

where we introduce here the notation F(d/ds, /3y, ¢ ,x, 5)
or, ocassionally, just F(d/3ds, 8/3y) to indicate that Fis a
linear operator involving differentiation with respect to the
variables s and y, with coefficients depending on the varia-
bles ¢, v, s; and 7 and y are such operators as well.

That P, (V)is preceded by an operator 7 involving only
differentiation with respect to s can be checked by direct
calculation (we will give the end result here) and is also relat-
ed to general theorems arising in the propagation of singular-
ities for hyperbolic equations.'® 4 involves no differentiation
with respect to ¢, as /, is a left null vector.

Explicitly it is possible to show that (with scalar func-
tion o)

LL —iw)(P, (U)) = LIL — iw)or)
= (Bn)(BXn):[4 po,(Bn)BXn + pu-V(o,(Bn)BXn)

+ B-V{o, pc(BXn)) + po,(Bn)(BXn)Vu

+ o, pc(BXn)VB] — pc(BXn)

[ — 4o, pcBXn — V(o pc(BXn))

+ o,(B*n)(BXn)-VB] — B-V(o,(B-n)(B Xn))

+ o, pc(BXn)Vu — B-V(o,(B-n)(B Xn))

— peco(BXn)Vu — wV(— pco,(BXn)), (46)
where ¢ = ven.

Using vector identities, it is possible to show, after some
manipulation, that the above expression reduces to

o, 4+ o,[log(Vp BXn|>/(® +p)) | =iwc,,  (47)
where
g =+ B/p)Ve.
This can be integrated to yield
0,(s) = €D + Jp)/\Jp |BXn|>. (48)
We will see that if w is real, @ is in the essential spectrum

of L and that this fact in turn is related to the above form of
o,. We note that there exists a constant d > 0 such that

[BXn|>d. (49)
This is so because

(u+B/Jp)n=0,

|(w+ B/Vp)Xn| = u+B/p|.
Therefore,
(@ Ap + 1)BXn| = |(Jpu+ B)Xn — Jpr2 (V6 Xn|

>|(Wpu + B)Xn| — [Vpr2 (#)V6 Xn|

= [Vpu + B| — |[Vpr2 (¥)V6 Xn|

>{(@/p + 12B2 + [Bo(1 + P Ap)

+Vpr2 (1P} —p 12 ().

The above expression is then clearly bounded away
from zero provided that either the toroidal component of the
flow and that of the magnetic field are in the same direction
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or that the poloidal magnetic field is large compared with D _(?E 4B ( J , a )f] " C( a 4 ) o), 51
Vo2 (). N _ ¢ Ay 3 o’
For the remaining equations, where D is a nonsingular diagonal 7 X 7 matrix
biL = A)U 4,
(50) D= ,
(L —A)U A

of (44), we will make use of the fact that they may be written the A, are the remaining nonvanishing roots of (34), and

as | U=U-P,(U)

We now expand the coefficients of all the operators around the field line, for instance,

7/( 3(; g ) 7‘(¢o,xo,S)-— +7’X(¢0’X0rs) y(%,(—%),

where #(3/3y, 3/3s)is O (¢ — by, ¥ — Yo) Such an expression is valid given the assumed smoothness of the equilibrium
quantities.

We now consider the action of L — iw on the following sequence of test functions (Weyl sequence). Here €,, indicates a
discrete parameter that tends towards zero as mt co:

U, = qb,( ¢ ;"’0 )n,( Xty )/( - (Sm) )al(s)rl(s) +é ¢2( ¢ ;"’0 )02( X ;1’0 )[( T )( g‘za (s, (s))

m m

eS8 W i Sro) (222 (S5 Y g S

‘Herethe @, 2,, D, 12,, > B are smooth functions whose support is contained in { — 1, 1]. Also o,(s) is chosen to satisfy (48).
We will let

‘p‘( ¢T_m¢' )”( = )f (7 = Jotorio = . 2
and
o8 o120 Erim

Our object for the remainder will be to show that

L — iw)U,, |<N (m)||P, (U, )| <N (m)|| U, |, (53)
where N (m)l0as mt .

We now will also use the notation

oy(s)ry(s) = ls),

i=38 i=8

Uis)= Y olshrils), V(s)= 3 &ils)r, ).

i=2 i=2

We recall as indicated above that the first equation may be written, in view of (45),

o)U, = —_ ; 9 yas 90 ey —
WL = )0y = ot (s Yo+ 486010 5+ 43658020 5 U+ O = oy~ 10

=é"vm¢2(£;ﬂ)”5(xe_:,xo )/( T )f]’"(s’
i 2 (Y g 8 (5 o]

m

2(¢;¢°)nz()‘;x°)f(usm)) m()+—%V +0(€7). (54)

m

+ Ay D

3

Here
;16(=11°A€§, 23=11°A3, and a>0.

Similarly, the remaining equations in (50) can be summarized as
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TS

m

xf(ﬁ)fj(swpoég ("5—“’5_0)

xb2(l’6—:l"l’o )/( 7 :m) )f/(s)
+Da,( ¢6—m¢o )H< $ e—',',,¢0 )/( o Jois
(2 (Y o

+e;"cg[¢,(2_—ﬂ)m(x;n%>

€ €

m

m

m m

xf( = - Jats|+ 0ten (55)

where 7 > 0.

Also n and k must be chosenson + k = 1. To eliminate
all quantities which do not tend to zero as €,, tends to zero,
we chose for given #i(s) [determined from (48)]

DU (s) = Cgis),
(56)

DoV (s) = DU t(s) — C3T(s),
where [ is the 8 X 8 identity matrix, and

D, =P =Y, -f)ﬁ =pB=1,

27 =10,

This being done it remains to show that the order of
magnitude of || U || is bounded by that of ||u||, where || || desig-
nates the L, norm in £2.

With

J=|V¢ XVy-Vs|,

we have
16,17 = [ 181, av =[5, 70| sy g
7 2

Lim)
—efapay [ 10, as
Q — L{m)
where
e=[-111x[—-11]

The only dangerous contribution is the one due to o in U,
given by

L (m)
e fapay [ 369l 17 ds.
—L(m

Now from (48) o,(s) = expliws) (D + Vp)/Vp |BXn|? so the
only nontrivial part to estimate is the contribution in
|BXdn/ds|.

However, using the bicharacteristic equation, men-
tioned above (41),

dg,

— a td
s - ox [(w+B/Ap)vs ] (57)

for the normal, and, splitting off the dependence on the nor-
mal and dividing by |V¢ |, we obtain
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d d|v B
|V¢|—n + V¢ | n= —V[(u+ ——)-V¢]. {58)
ds ds \/,E
Taking the cross product of this equation with n and again
withn, using dn/ds-n = 0, and then, taking the cross product
with B, we see that

‘Bx dn <C, (59)
ds

provided that u + B/y/p has bounded derivatives as we have
assumed throughout. So,

0% (5] <C<C " inflo (s
Thus
L (m)
e fapay [ ot ds
)

—L(m
L (m) .
<err[dpay [ oy ds = JilE.
— L(m)

This concludes the estimates needed to show that U,,
consititute a Weyl sequence provided that o, satisfies (53}, as
was to be shown.

VI. SLOW WAVE

Here we would like to address the question as to
whether the “slow” branch of the dispersion relation {38)
contributes to the ballooning equations as it does in the static
case. A ( + ) slow ray is generated by the solution of the
bicharacteristic systems

dx; a

— = 5. {uVg +c, |V |}, (60)
b,
= a—)ﬁiu%icslvftl}, (61)
where

e ={}l@®+4° £ [[@®+ 47
_ 4a2((A.v¢ )/|V¢ I)2]1/2}l/2‘

In the limit A-V¢ 10, the ray trajectory described by (60)
will become parallel to u + B A since the bracket in (60)

tends in this limit to u-V¢ 4+ B AV,
In the general case A:V¢ #£0, (60) reduces to

dx; An

— =u+cn+d
dt c,C
where

C=[{4%+ a*? —4a*(AVé /|Ve |12

These remarks allow us to deduce that for the discus-
sion of the slow wave there are essentially two major cases
according as to whether A-V¢ = 0 or A-V¢ #0 at any given
point on the ray.

In the first case it is possible to show that A-V¢ remains
zero along the entire trajectory of the ray. Thus since as
mentioned above dx/dt = u + /8 A, and
u-Vy = A-V¢y = 0, where we recall that ¥y = const. is the
family of single-valued flux surfaces introduced in Sec. 11, it
follows that dx/dr-Vy = 0 so that a ray that at any point

(A — (A-n)n), (62)
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intersects a given flux surface remains on it forever. More-
over, as long as the part of n not parallel to B, 712 ()9, is not
zero, uX B ““is parallel to” V¢ so that V¢ “is parallel to” V.
Thus in this case the equation for the + slow ray couples
with the Alfven rays as in the case studied in Ref. 13.

When {2 (¢;) = 0, one must distinguish the case
£2 () ~ (¢ — ¢,)" for n > 2 from the case n<2. In the former
case we are in the situation studied in Sec. III so that again
the slow wave couples with the Alfven to yield points in the
spectrum. Note that here V¢ need not be parallel to V.

In the latter case, it is possible that the normal V¢ as-
sumes the direction Vi at certain points on trajectory of the
ray. If this happens, it is not presently known what implica-
tions this has for the spectrum nor whether the cut offindeed
occurs for n = 2,

In case A-V¢ #0, little can be said. However, by taking
the inner product of (62) with Vi, we observe that

» 2 L] 2
dx Vo= +onVy+ (A)'n-Vyja"
dt c,C
+ ¢;C — (An)’a?
— +c (A-n)‘a '
c,C

From (34), n°V¢ never vanishes, and by inspection, nor
does the square bracket; therefore, the ray trajectories leave
the ¢ surfaces and can intersect the boundary. In this case it
is not possible to get an eigenvalue problem in a neat way as
one must take into account the reflection of the ray from the
boundary, causing complications which are not tractable
within the framework which we identify with ballooning
modes.

Vil. CONCLUSION

We have given a mathematical derivation of points in
the essential spectrum of ideal MHD, the so-called balloon-
ing modes. We showed them to correspond to Alfven and
slow magnetosonic waves propagating one-dimensionally
along their rays. (We hope to discuss in the future the possi-
ble implications of these spectra on heating mechanism.) In
axisymmetric configurations the ballooning modes are finite
limit points of eigenvalues with increasing azimuthal Four-
ier mode number, and, therefore, an observer in a rotating
frame will see different ballooning modes. This statement
should not be misinterpreted. The fact that a rotating ob-
server does not see, say, an unstable ballooning mode does
not mean that he sees a stable plasma. He will still see a
sequence of discrete unstable eigenvalues, but they will di-
verge to infinity.

We showed that the most unstable ballooning modes
are seen in a frame rotating with the plasma toroidal fre-
quency, while in any other frame only stable ballooning
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modes are observed. Nonconstancy of the plasma toroidal
frequency £2 (1) will stabilize the ballooning modes except at
magnetic surfaces ¢, where all derivatives of £2 vanish up to
(d "/dy™) 2 (o) = 0, with n sufficiently high (n > 2 will cer-
tainly do). Although we expect that this shear stabilization of
the ballooning modes is genuine, it is still possible that it only
means that the accumulation point, instead of being finite, is
shifted to infinity. Even if the flow shear does eliminate the
high m unstable modes, and their accumulation points, it
may not substantially affect modes with m{2 '(¢,)<1. Thus
stabilization by flow shear cannot be firmly concluded and
needs further analysis.

The effect of the plasma rotation on ballooning stability
was investigated by an asymptotic expansion in the torus
aspect ratio. Our analysis shows that, to leading order, sta-
bility requires a minimum energy state, and the perturbed
energy consists of the same curvature term as in the static
case, plus terms familiar from fluid dynamical flow stability.
Regretably, the expected case of confined plasma with only
toroidal rotation is potentially destabilized by a rigidly rotat-
ing flow.
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The structural stability in the sense of Adronov and Pontriaguin for kinetic models of a closed
reacting mixture is investigated. Necessary and sufficient conditions for the mass-action kinetics

model to be structurally stable are derived.

PACS numbers: 82.20.Fd

1. INTRODUCTION

A useful model for a physical system must be struc-
turally stable’ in the sense defined by Adronov and
Pontriaguin® so that when the control parameters, often not
known precisely, are slightly changed or any small perturba-
tion is introduced, the model remains qualitatively the same.
The most frequent model for describing the rate of change of
chemical concentrations is the “mass-action kinetics” mod-
el. By this kinetics, in the theoretical literature® is meant a
rate law describing a reaction made up of a set of elementary
steps where the stoichiometry of each step reflects its molec-
ularity. In the present paper we ask: When is the mass-action
kinetics model a structurally stable model for a closed sys-
tem? In closed systems the concentrations of the chemicals
are confined to the so-called reaction simplex R * that is,
starting from an initial vector of concentrations, the set of all
possible corcentrations that satisfy the law of conservation
of atoms and of conservation of mass.

The boundaries of R are given by the conditions

fc, =0, i=a,, a...,a,}

{¢; = molar concentration of the ith chemical) for certain
families of indices {a,, a,,..., &, } such that the laws of con-
servation of mass and atoms are fulfilled. The simplex R is a
segment for a two-component system, a triangle for a three-
component system, a tetrahedron for a four-component one,
etc.

By a stationary state in the boundary of R we will then
mean a state for which all the concentrations remain fixed in
time and at least one concentration remains zero. The exis-
tence of a thermodynamic potential defined on R does not
rule out the possibility of such steady states. In fact they are
frequently encountered in autocalytic models which are
compatible with thermodynamics (c.f. Ref. 5).

In order to make certain that the equilibrium state is the
only global attractor, Krambeck® and, implicitly, Gavalas®
have introduced the additional requirement that no steady
state with a vanishing concentration of one of the chemicals
should occur. As we shall conclude from this paper, the
structural stability restriction is stronger than that of Kram-
beck and Gavalas.

The weakest condition that ensures the structural sta-
bility can be formulated as follows: Consider any face of the
boundary of the simplex R given by

e, =0, i=a, ap.,a,}; n<r
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then, at each point of the face there should be at least one a;,
J=12,..., n such that dc, /dt > 0. This condition will be
referred to as the transversality condition.

It obviously implies that no stationary state with at least
one concentration equal to zero (that is, in the boundary of
R ) can occur.

Actually, it implies more than that. The restriction of
Krambeck and Gavalas stated above is derived from the w-
stability condition of Wallwork and Perelson’ which is a
necessary but not sufficient condition for the structural sta-
bility (c.f. Sec. 3).

The transversality condition can be translated for the
mass-action case into restrictions on the kind of molecularity
that the elementary steps can have. This is in the sense that
(c.f. also Sec. 4) first-order kinetics models fit these restric-
tions.

For higher-order kinetics further complications arise:
Even if a system in which a control chemical acts exclusively
as a catalyst (or autocatalyst) in one elementary step and it
does not present any steady state in the boundary of R (as
defined above), such a model will not be structurally stable
since the transversality condition is not fulfilled.

2. ANECESSARY CONDITION FOR STRUCTURAL
STABILITY

We shall consider a closed system of .S independent ele-
mentary reaction steps and N reacting species.

The system is assumed to consist of a single phase and
the reactions to occur in a well-stirred vessel under isother-
mal and isobaric conditions. The changes in composition
due to elementary reaction steps obey

c(t) = ¢0) + v& (1)
in the case of the mass-action kinetics model.
c(t) = (cy(t), ol )yees en(2))

is the concentration vector in moles per liter. ¢(0) represents
the initial concentration vector. v is the stoichiometric ma-

trix RY %53y,
§=(§1,§2,.--, §s) (2)

represents the molar extents of the reactions.®

For each ¢(0), v maps R® into R". The reaction simplex
R *is then the restriction to positive concentrations of the
image of v. R is a compact set since it is also convex and its
dimension is the rank of v.
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The mass-action kinetics are defined as

d .
—c=¢=X(c) (3)
7 (c)

The vector field X = (x,, x,,..., Xxy) is C ' and each compo-

nent is a polynomial in ¢,’s with fixed real coefficients: the
mass-action rate constants.

The kinetics are said to be thermodynamically compati-
ble if the Gibbs free energy G defined on R is a Liapunov
function, that is

(a) There exists a constant « > 0 for which G(¢) + x>0
for all ceR;

(b) G is strictly convex:

G /96,06, >0 in R; (4)
dG N 3G
ch—x—= Zﬂ,x<o (5)

where the equahty only holds at the equilibrium, that is at
the zero of X. The w-limit set of a point c€R is defined:
w(c) = lim,_, _ F,c, where the flow { F,, 0] is the monopar-
ametric family of differomorphisms associated with X repre-
senting the evolution of the system.

L (R ) represents the set of C '-vector fields defined on R
and L,(R ) is the set of C '-vector fields whose flows leave R
invariant.” These spaces are normed spaces with the C '
norm {}| }};} defined as follows:

)

As we shall prove later, the only valid models X for the kinet-
ics must be in Ly (R ).

A model X is said to be w-stable [in L (R )] if there exist a
neighborhood U (X)of Xin L (R ): U(X)C L (R )such that for
every YeU (X )thereexistsahomeomorphism / (bijectiveand
bicontinuous map) of R onto itself such that
hwy (R ) = wy (R ). Wallwork and Perelson” have shown that
amodel X which is w-stable and thermodynamically compa-
tible has exactly one zero in R which is the only global attrac-
tor and this is the equilibrium state. We shall define the R-
stability of a kinetic model X as the structural stability of X
regarded as a point in L, (R ). Rigorously, if there exists a
neighborhood ¥ (X) with ¥ (X)C L, (R ) such that for any
YeV (X), there exists a homeomorphism % of R onto itself
mapping trajectories of Y onto trajectories of X.

The concept of R-stability leads to the following defini-
tion: An R-perturbation 0 is a perturbation of a vector field
XeL,(R ) such that © + XeL,(R ). As shown in Sec. 4, if Y
and X are two mass-action kinetics models for the same sys-
tem, then Y — X is an R-perturbation. The physical signifi-
cance of the R-stability can be given by the following laws:
Let Y be obtained from X by an R-perturbation. Let E, be
theflowof Yand y,; (i = 1,..., M) the number of atoms of the
class i/ in the species j and M, the molecular weight of species

J. Then

1%, = Masizum( |l

Qj= 12N

Z Vi€ =

Z?’., e, i=12,.,M, (7)
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N
S My, 2 M,Ec; , (8)
j=1 J=1
where
Ec=(E}c)...., EVcy), 130. (9)

The following theorem relates the w-stability with the R-
stability defined above.

Theorem I: Assume that the system is compatible with
thermodynamics; that is, G is a convex function defined on
the reaction simplex R, and dG /dt = VG - X <0, except at
the point where G attains its minimum; at that point dG /
dt = 0. Then the w-stability of the vector field X is equiva-
lent to the R-stability of X.

Proof: The w-stability implies (see Ref. 7) that X has
exactly one global attractor in R. This global attractor is the
only zero of X in R and lies in the interior of R. This is the
thermodynamic equilibrium point ¢ where G takes its mini-
mum value on R. This point ¢ retains part of its basin of
attraction under C '-perturbations (hence, under C '-R-per-
turbations), that is (for details, see Hirsch and Smale, Ref. 10,
p- 316), there exists a neighborhood Ug(X)CL (R)and a
number 7> 0 such that the set U, (¢ ) contains the thermody-
namic equilibrium point s = s(Y) for each Y belonging to
Us(X) and U, (¢ ) is contained in the basin of attraction of s
and it is positively invariant under the flow of Y. Hence
U,(¢) is retained as a part of the basin of attraction of the
thermodynamic equilibrium point of X under C '-R-pertur-
bations. We can, therefore assume that U, (X) is contained in
L, (U,(¢)). As the border of the reaction simplex is compact
and, from our hypotheses, all trajectories tend asymptotical-
ly to a point in the interior of R, there exists #, > O such that
F,(x)belongs to U, (¢ ) for any ¢ > ¢, and any x belonging to R.

To see this it suffices to give a covering of JR in the
following way: For every x belonging to dR, there is a neigh-
borhood U, CdR of x and ¢, >0 such that F,{ y) belongs to
U.(¢)forevery yin U, CdR and r> .. From this covering
we can extract a finite subcovering.

There exists a neighborhood ¥ (X)CL, (R ), such that if
Y belongs to V' (X) and E, is the flow of Y, E,(x) belongs to
Uigp)fort>t,>t,and x in R.

Let W (X) be U, (X)nV (X); we shall show that every Y
belonging to W (X) is equivalent to X.

Any trajectory of Y belonging to W (X) tends asymptoti-
cally to s(Y). We define an homeomorphism H : R — R as
follows: For every x belonging to R, x 5@, there is a unique
X, belonging to dR and ¢, >0 such that F, (x,) = x. We de-
fine

H(x)=E, (F_, (x)) = E, (xo),
H(g)=s(Y).

This is a continuous 1-1 map that makes the following dia-
gram commutative:

Ft
R R
H l H. (10)
El
R R
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Hence we have shown that w-stable vector fields on R which
are thermodynamically compatible are also structurally sta-
ble with respect to vector fields in Ly (R ).

3. THE WEAKEST ADDITIONAL CONDITION TO
ENSURE STRUCTURAL STABILITY IN THE GENERAL
CASE

The existence of the homeomorphism H is obviously a
stronger condition than the existence of a homeomorphism
h : R — R mapping the w-limit set of x onto the w-limit set
of Y. Since this is true for every Y belonging to W (X), the
converse part of the theorem is also proven.

Now assume the following condition is imposed on the
boundary of R: If ¢; =0, j = a, b,..., L, then there exists
ie{a, b,..., L } such that

¢ >0. (11)

If the system is thermodynamically compatible, then, again,
there exists a unique global attractor: the point of thermody-
namic equilibrium, hence, as it follows from our proof, the
system regarded as a point of L, (R ) is structurally stable.
Let Z (X)C L (R ) be asufficiently small neighborhood of X so
that if Y belongs to Z (X), Y points inwards along dR. Then
Z (X) is also contained in Ly (R ).

Wetakenow Z (X)nW (X); thisisaneighborhoodinL (R )
[and alsoin L, (R )] such that every Y belonging to it is equi-
valent to X, that is, there exists H as in the theorem above.
But then the system X is structurally stable.

We obtain the following implications for a thermody-
namically compatible X.

w-stability —————— R repellent

R-stability
At any face {c¢; =0,
i= ay, aZ"“y a, ;
structural stability ——— there exists je{1,2,... r}
with €q,>0.

The condition of repellent boundary obtained by Wallwork
and Perelson’ from the postulated w-stability is a necessary
but not sufficient condition to ensure the structural stability
of the kinetic model.

R could be positively invariant with respect to the flow
F, of X, its boundary could be repellent, and still there could
be a point in the boundary of the reaction simplex at which X
is tangent to the boundary, that is, at that point condition
(11) does not hold. Under these circumstances it cannot be
ensured that under arbitrary small perturbations of X, the
resulting flow will map R into itself for all times. This is
because for any given € > 0, there exists a perturbation of X
of C '-norm less than € such that the perturbed vector field
points outwards at the point where X was tangent to the
boundary. Hence, the condition of w-stability does not en-
sure for arbitrarily small perturbations that the resulting
vector fields will lie in L, (R ).
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4. THE WEAKEST CONDITION FOR STRUCTURAL
STABILITY AS APPLIED TO THE MASS-ACTION MODEL

Let us first consider the case of first-order kinetics. The
following result readily follows:

Theorem II: If a system X corresponds to first-order
elementary steps, there exists a neighborhood of X in L (R ):
U = U (X) such that for every Y belonging to U (X), Y obeys
the laws given by Egs. (7)-(9).

Proof: If some species A has zero concentration, then
the forward velocity of any reaction step in which it acts as
reactant vanishes while the reverse velocity is zero unless the
concentration of the product corresponding to that step is
zero. By an inductive argument, since the number of steps is
finite, there exists a species whose concentration is zero and
the forward velocity of the reaction step is zero but the re-
verse velocity is not. Therefore, we have proven that the vec-
tor field points inwards along the boundary JdR, that is for
any point of dR there exists at least one i/ with ¢; = O but
¢; > 0. Then for sufficiently small € > 0, there exists
U = U_(X) such that for every Y belonging to U, Y points
inwards along dR. Then the flow of Y leaves R invariant,
therefore, Egs. (7)—(9) hold. Q.E.D.

The same argument does not apply for second- (or high-
er-) order kinetics; for example in the case

A + B=C,
(12)
A=D,

the vector field X is tangent to the face { B = 0, C = 0} of dR,
hence, for every § > 0. There exist a C '-perturbation 0, with
||8]], < & such that @ + X points outwards at the face { B = 0,
C = 0}. Also, if the system contains a catalytic step
A + B=B + Cor an autocatalytic step 4 + B—=2B and spe-
cies B does not participate in other steps, there the transver-
sality condition for X again does not hold. The vector field is
tangent to the boundary dR at the (N — 1)-dimensional face
{B = 0}: B = 0. For first-order kinetics, Theorem II above
leads to:

Theorem III: A thermodynamically-compatible first-
order kinetic system X is structurally stable.

Proof: There exists (Theorem II) a neighborhood
UCL (R )of X whichis also contained in L, (R ); hence, from
Theorem 1, the system is structurally stable.

As for higher-order kinetics, we derive the following.

Theorem IV: If the system X is subject to the following
restriction: For any face of the boundary of the reaction sim-
plex R the following condition does not hold:

Let {4; =0};_, 4, .., bea generic face of the bound-
ary of the reaction simplex of dimension (N-L ). [A (N-
L )-simplex by itself.] For every je{a,,..., a, }, let
(5. _a g 4, be the set of all elementary steps that
include species 4;.

For each ie{a, B,..., A; ] there exists ke{a,, a,,..., a, |
such that if 4; is a reactant in step S,-A’ then A, isa
product in that step and vice versa: if 4; is a product,

then A, is a reactant in S,»"f'.
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Then, the thermodynamic compatibility implies the struc-
tural stability.

Proof: This condition is clearly the necessary and suffi-
cient condition for X to be tangent to the (NV-L )-simplex
{4, =0},_, ., .a - Hence, if the condition is not fulfilled, X
points inwards along dR, therefore, any sufficiently small
C '-perturbation obeys the laws given by Eqgs. (7)~9) and
Theorem I applies. In particular, the condition means that if
a species acts exclusively as a catalyst or autocatalyst in a
single reaction step, the mass-action kinetics model is struc-
turally unstable.

5. CONCLUSION

The existence of a unique global attractor in the form of
a steady state is a feature clearly suggested from the experi-
mental fact that every closed reacting system decays to the
thermodynamic equilibrium. In order to ensure this unique-
ness in a model, several authors (Krambeck,® Galvalas,®
Wallwork and Perelson’) have imposed conditions in addi-
tion to the existence of a thermodynamic potential. These
conditions are:

(a) the w-stability (Wallwork and Perelson’); or the
weaker,

(b} no stationary state with at least one vanishing con-

centration can occur. (In the terminology of this paper, there
is no stationary state in the boundary of the reaction simplex
R) (Krambeck,” Gavalas®).
We have demonstrated in this paper that the decay towards a
unique equilibrium state is not the only feature that a model
should reflect but in addition it should be structurally stable.
The properties (a) and (b) are consequences of this inherent
global stability of the model.

6. EXAMPLE

Consider the isomerization

A I:AZ#B
with initial concentrations

A, =1, 4, =4, =0. (13)
We concentrate on the following problem: To what extent
does the mass-action kinetic model

/:11 = —KpAd; + K4,
X= 42= — {2y + Kko3)dy + K104, + K323, (14)
As = + K3d; — K3pd;
represent the “actual” phase portrait of the system?

Since the model (14) is structurally stable (Theorem II)
there exists € > 0 such that the phase portrait of X is pre-
served' for every Y such that | Y — X||, < €. Any C '-pertur-
bation 8 must be tangent to the reaction simplex

{4, +4,+45;=1, 4,50, i= 1,23},
that is, it is of the form
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6 =1(6,,0,,0;) with 8, + 6, + 6, =0. (15)

The preservation of the phase portrait implies that Y will
satisfy the laws given by Egs. (7)—(9) and it will have strictly
one global attractor: a sink which is the image under H of the
equilibrium. The vector field X might defer from the “actu-
al” vector field because

(a) the rate constant «; (i, / = 1,2,3) cannot be measured
accurately; and

(b) the system obeys mass-action kinetics only approxi-
mately.
The following perturbations account for inaccuracies in the
measurement of the rate constants in the model given by X:

0" = ( — 54, 54,0),

02 = (5B, — 5B,0),
(16)
0% = (0, — 6B, 5B),

8" = (0; 8C, 5C).

If 5 < €, the inaccuracies will not affect the topology of the
phase portrait represented by X. Consider the space L, (R )
generated by linear combinations of these perturbations of
X.

Then, L (R }CL,(R)since, for any M > 0, the vector
fields X + 8 with [|0'||,>M, j = 1,2,3,4 obey
(4= 0:>A,- >0, i =1,2,3]. This result implies that these
perturbations can only affect the topology of the phase por-
trait by changing the basin of attraction of the equilibrium of
X. Or more rigorously:

Theorem V: If the model (14) for our system (13} lies in
the category (a) as shown above, then € can be chosen equal
to 3. (See Theorem 1.)

Proof: (Following the notation of Theorem I). Since we
restrict the space L (R)to L (R), V(X)=L,(R), and
W(X) = Us(X)nL,(R ); Us(X)CL(R).
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